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Summary
Equivariant neural networks recently emerged as a principled way to do deep learning
when symmetries of the prediction task are known in advance. An important class of
equivariant networks are steerable CNNs. Convolutions in this setting use a steerable
kernel which guarantees that the output features transform predictably when the in-
put features transform under the symmetry group. These steerable kernels show a re-
markable similarity to representation operators — generalizations of spherical tensor
operators — which are central to quantum mechanics. Such representation operators
can be described concisely using the Wigner-Eckart Theorem. By extending the ker-
nel linearly to the space of square-integrable functions on a homogeneous space, we
get a precise link between steerable kernels and representation operators. This allows
us to prove a Wigner-Eckart Theorem for steerable kernels of general compact groups
which also completely covers the kernel theory of gauge equivariant CNNs whenever
their so-called structure group is compact. Consequently, in the compact case, we
obtain a general description of how to parameterize steerable and gauge equivariant
CNNs. In our result, steerable kernel bases are expressed using endomorphisms of ir-
reducible representations, Clebsch-Gordan coe�cients, and harmonic basis functions
on a homogeneous space. We discuss the symmetry groups U(1), SO(2), Z2, SO(3)
and O(3) and derive concrete steerable kernel bases between arbitrary irreducible in-
put and output �elds. By a thorough investigation, we show that the kernel bases are
consistent with prior results obtained for these symmetry groups, in cases where they
have been described before. While we only derive concrete kernel bases for groups
that are relevant in image processing, we note that our work applies just as well to
groups like SU(2) or SU(3) that appear in physics. We hope that this new link between
the theory of equivariant deep learning and quantum mechanics will lead to fruitful
collaborations between physicists and chemists on the one hand and deep learning
researchers on the other hand.
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1. Introduction

1.1. Steerable and Gauge Equivariant Kernels and
their Symmetry Properties

Deep learning is the workhorse of much of modern research in machine learning. Es-
pecially convolutional neural networks (CNNs) are ubiquitous and led to some of the
great successes in previous years: AlexNet [1] was a landmark success in the classi-
�cation of images by machine learning systems, and is thought of having led to the
deep learning revolution.
CNNs are neural networks that distinguish themselves from fully connected neural
networks by two main properties: local connectivity and weight sharing. Local con-
nectivity leads to a processing of the network that hierarchically builds abstract fea-
tures. Thus, for example, an eye is recognized by the presence of certain characteristic
parts in the correct relative con�guration, for example eye lids, pupils, and the iris.
These parts themselves are assembled and recognized from lower-level features like
speci�c color patterns and edges.
The weight sharing plays another role: by copying �lters and placing them on all
positions at the image, the idea is formalized that local features “mean the same ev-
erywhere”, and that therefore the network should process the image in the same way
everywhere. In classi�cation, we see that convolutional neural networks preserve the
invariance of meaning under certain symmetries: if the image is translated, e.g. moved
to the right, then its meaning does not change. Since the processing of the network
is exactly the same at the new position compared to the old one, the network also as-
signs the same meaning as before, and so the invariance of meaning under translation
is preserved. More precisely, the output of a translated image under the CNN layer
is precisely a translation of the output of the original image. In more diagrammatric
fashion, we can express this as follows: we denote by I the image and by t a trans-
lation operator that, say, translates the image a little to the right. K is the �lter, or
kernel, that is convolved with the image in order to produce local features. Then both
paths in the following diagram lead to the same result:

I t(I)

K ? I
K ? t(I) =
t(K ? I)

t

K? K?

t

(1.1)

1



1. Introduction

In recent years, this symmetry property formed the starting point for investigations
into generalizations of this so-called translation equivariance. The main motivation is
as follows: in many cases, there are symmetries besides translations that also preserve
meaning. We therefore want our networks to preserve these symmetries. The most
obvious examples for this appear in medical image analysis and the analysis of satel-
lite images. When analyzing small-scale structure like patterns on skin patches, there
is no relation between the orientation of a certain pattern and its medical meaning.
For example, a skin anomaly should be classi�ed as cancer irrespective of whether
this pattern is upside down or not. In fact, there even is no ground truth orientation
at all that would make it sensible to talk about “upside-down”, and all orientations
are equally likely. Usual CNNs have the problem that they do not preserve the pat-
terns under rotation and re�ection, and so they have to relearn the patterns in all
appearing orientations. What we want, however, is the analog of Diagram 1.1. That
is, additionally to the translation equivariance which we still want to ful�ll, we want
the following: assume r is a rotation or re�ection operator that takes an image and
outputs its rotation or re�ection. Then for all such operators, the two paths in the
following diagram should lead to the same result:

I r(I)

K ? I
K ? r(I) =
r(K ? I)

r

K? K?

r

(1.2)

Recent years have seen great success in formalizing this idea in di�erent settings and
came up with remarkable solutions to the underlying technical problems [2–4].
Recently, it became clear that this requirement for equivariance with respect to sym-
metry transformations is also related to physics [5–7]. Especially gauge equivariant
CNNs [7] provide an interesting new perspective. What they address is the problem
of applying neural networks to data on curved and topologically nontrivial shapes,
for example the sphere. The problem then is that there is no preferred orientation
for applying the kernel, and so the outcome of the convolution becomes ambiguous.
The crucial idea is to view the outcome of the convolution as a �eld of features ex-
pressed in a certain gauge, which is a choice of a local reference frame. The desired
property is that �rst convolving and then changing the gauge leads to the same out-
come as �rst changing the gauge and then convolving the result. These changes in
gauges, or reference frames, are no active transformations of the input but just pas-
sive changes in the viewpoint. However, when interpreting them as active changes in
the measurements of the quantities involved, then the requirement to respect gauge
transformations leads to a similar picture as Diagram 1.2. This is intimately connected
to physics, where there is in the same way no preferred coordinate system in which
to apply our physical theories. A change in the coordinate system will change the re-

2



1.2. An Analogy between Steerable Kernels and Spherical Tensor Operators

sulting physical quantities and predictions, but only relative to the chosen coordinates,
whereas the absolute predicted quantity remains the same.
What all of this suggests is that there is one theory for equivariant kernels that in-
corporates all the previously discussed examples. For gauge equivariant kernels this
might not be obvious since they operate on curved shapes, so-called Riemannian man-
ifolds. However, since the kernels actually live in the tangent space of the manifold,
the �at story applies. A kernel is then formalized as a general function

K : Rn → Rcout×cin

that locally maps between spaces of feature vectors Rcin and Rcout . It is useful to give
the feature vectors themselves an orientation, for example in order to detect edges in
di�erent angles. This means that there is a transformation group G like O(n) that
can manipulate the input- and output features by transformation rules, called linear
representations, ρin and ρout. For a representation ρ and each g in G, ρ(g) is then a
matrix, and group multiplication corresponds to multiplication of matrices:

ρ(gg′) = ρ(g) · ρ(g′).

Additionally, the transformation group G is assumed to act naturally on Rn itself, for
example if it is O(n). The kernel then needs to ful�ll the following transformation
rule for all x ∈ Rn and g ∈ G in order to obey Diagram 1.2:

K(g · x) = ρout(g) ·K(x) · ρin(g)−1. (1.3)

This is the kernel constraint that �rst appeared in Cohen and Welling [3] and later,
in a re�ned version, in Weiler et al. [8] and Weiler and Cesa [9]. It is the same kernel
constraint that later reappeared in gauge equivariant CNNs [7]. A kernel that ful�lls
this constraint is called a steerable kernel.

1.2. An Analogy between Steerable Kernels and
Spherical Tensor Operators

Symmetries play a large role in physics, as we already hinted at above when discussing
gauge equivariant CNNs. Additionally, whenever we actively rotate all the “actors” in
a physical interaction in the same manner, we expect that the physical behavior will
essentially not change — or, more precisely, rotate in the same way as the physical
actors we started with.
An important example of this is state transitions of electrons in a hydrogen atom. Ba-
sis states are in this context described by quantum numbers, including the so-called
orbital angular momentum quantum number l and the magnetic quantum number n.
Hereby, we separate o� the radial part and ignore it. The state of the electron is then
described by the so-called ket |ln〉. How can state transitions to another basis state
|JM〉 emerge? One possibility for this is the absorption of a photon. The oscillating
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electromagnetic �eld of this photon induces an operatorKmj that can, via certain selec-
tion rules, induce changes between di�erent states the electron might be in. Hereby,
j and m are themselves quantum numbers, but this does not matter for now.
Mathematically speaking, possible transitions are described as follows: the starting
state |ln〉 and the goal state |JM〉 both live in some large spaceH, called Hilbert space,
and Kmj is an operator Kmj : H → H. By de�nition, Hilbert spaces come equipped
with a scalar product. The amplitude a of the state transition, which is closely related
to the probability of this transition, is then given by the expression

a =
〈
JM

∣∣Kmj ∣∣ln〉 . (1.4)

This can roughly be imagined as follows: when expressed in bases, one can associate
toKmj a matrix, and to the bra 〈JM | a row vector, whereas to the ket, |ln〉, there corre-
sponds a column vector. Actually, the matrix of Kmj might have in�nitely many rows
and columns. However, in the following, we will only consider the “suboperator” that
maps from quantum states of quantum number l to those of quantum number J . This
is basically a restriction and “corestriction” of the full operator, where the corestric-
tion happens by an orthogonal projection on the component of quantum number J1.
From here on, we mean with Kmj only this smaller operator. Note that the result of
multiplying a row vector �rst with a matrix and then with a column vector is just a
scalar, and since the operations of the vectors and matrices correspond to those of the
operator acting on the bras and kets, we obtain a ∈ C.
Where does symmetry enter the picture? Imagine we rotate both the starting state |ln〉
and the goal state |JM〉 of the electron, as well as the oscillating electromagnetic �eld
of the photon, all with the same rotation. What we then expect is that the amplitude
of this state transition will not change since the physical laws are symmetric. That is,
assume that

(
Kmj
)g is the operator corresponding to the rotation g of the electromag-

netic �eld, |ln〉g the rotation of the starting state and |JM〉g the rotation of the goal
state. Then we expect an invariant amplitude

a =
〈
JM

∣∣g (Kmj )g ∣∣ln〉g.
Now, what does it mathematically mean to “rotate a basis state” or to “rotate an oper-
ator”? The quantum states of the electron live in representations with orbital angular
momentum quantum numbers l and J , which really means — precisely as in the case
of steerable kernels — that they come equipped with maps DJ and Dl that take a ro-
tation g ∈ SO(3) and map it to an operator that can rotate states, Dl(g) and DJ(g).
Expressed in bases, these correspond to the so-called Wigner D-matrices. The rotation
of the ket, |ln〉, is then given by

|ln〉g = Dl(g)|ln〉
1For a subspace U ⊆ H, the restriction of Km

j is de�ned as Km
j |U := Km

j ◦ iU where iU : U → H is
the inclusion. The corestriction to a subspace V ⊆ H is de�ned as PV ◦ Km

j , where PV : H → V
is the orthogonal projection operator. We perform both a restriction and a corestriction.
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for a �xed rotation g. The rotation of the bra 〈JM | is given by

〈JM |g = 〈JM |DJ(g)
∗

where DJ(g)
∗ is the adjoint of DJ(g). The adjoint of an operator hereby corresponds

to the conjugate transpose of the corresponding matrix. From this, we can �gure out
analytically what the rotation of the operator Kmj must be. Namely, we obtain the
following relation from all the previous equations:〈

JM
∣∣Kmj ∣∣ln〉 = a

=
〈
JM

∣∣g (Kmj )g ∣∣ln〉g
=
〈
JM

∣∣DJ(g)
∗ ·
(
Kmj
)g ·Dl(g)

∣∣ln〉.
Note that this equality must hold for all basis states |ln〉 and 〈JM |, which really means
that the middle parts of these terms are forced to be equal. A comparison and a re-
ordering — using that DJ is unitary and therefore inverted by building the adjoint —
gives us the following de�nition for the rotation of the operator Kmj :(

Kmj
)g

= DJ(g) · Kmj ·Dl(g)
−1. (1.5)

With some delight we see that this equation is relatively similar to Equation 1.3. The
former equation for kernels expresses that a steerable kernel in rotated coordinates
is given by the kernel in original coordinates, only conjugated by the representations
corresponding to the input- and output �eld. The new equation says that a rotated
operator in physics is given by conjugating the original operator with the representa-
tions of the input- and output states.
We now work on making this relation between operators in physics and kernels even
stronger. For this, remember that j and m, the indices that de�ne the operator Kmj ,
are also quantum numbers: j is an orbital angular momentum quantum number and
m a magnetic quantum number. Actually, one then has one operator Km′j for each
magnetic quantum number m′. From physics, it is well-known that the operators Kmj
transform under rotation in the same way as the basis kets in the linear representation
Dj . LetDm′m

j be the matrix elements of the corresponding Wigner D-matrices, where
m′ is the row index and m the column index. That the Kmj transform as the basis kets
in this representation means the following:(

Kmj
)g

=
∑
m′

Dm′m
j (g)Km′j . (1.6)

Comparing with Equation 1.5 we obtain:∑
m′

Dm′m
j (g)Km′j = DJ(g) · Kmj ·Dl(g)

−1. (1.7)

A collection of operators Km′j transforming with this rule is called a spherical tensor
operator in physics. If j = 0, then there is only one operator with the trivial trans-
formation law, which is called a scalar operator. For the case j = 1, there are three
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operators that transform in the same way as vectors in R3 under the standard matrix
representation of SO(3). This case is then called a vector operator. Tensor operators
are the generalization to arbitrary j ∈ N≥0.
In order to make the analogy to steerable kernels stronger, we would like to interpret
a spherical tensor operator as one object K, in the same way as a kernelK is one single
object and not just a disjoint collection of matrices inRcout×cin . For this, we interpretK
as a function that assigns to arbitrary kets of quantum number j an operator. Namely,
the kets |jm′〉 are the basis of the space on which the representation Dj acts. We then
de�ne K as the unique linear map which is given on basis kets as follows:

K : |jm〉 7→ Kmj .

We can then deduce from Equation 1.7 the following, where we insert the identity in
the �rst step, use the de�nition of the matrix elements of Dj and a swap in order in
the second step and the linearity of K in the third step:

K
(
Dj(g)|jm〉

)
= K

(∑
m′
|jm′〉〈jm′|Dj(g)|jm〉

)
= K

(∑
m′
Dm′m
j (g)|jm′〉

)
=
∑
m′

Dm′m
j (g)K (|jm′〉)

=
∑
m′

Dm′m
j (g)Km′j

= DJ(g) · Kmj ·Dl(g)
−1

= DJ(g) · K(|jm〉) ·Dl(g)
−1.

(1.8)

If now |v〉 =
∑

m′〈jm′|v〉 · |jm′〉 is any ket of quantum number j, not necessarily a
basis ket, then from the linearity of K and Equation 1.8 we obtain

K
(
Dj(g) · |v〉

)
= DJ(g) · K(|v〉) ·Dl(g)

−1. (1.9)

This equation is essentially the starting point for the de�nition of a representation op-
erator as a generalization of spherical tensor operators that can be found in Jeevanjee
[10]. This, �nally, really looks like Equation 1.3. In this comparison, the action of the
group G on Rn in deep learning is replaced by the action of SO(3) via Dj on the kets
of quantum number j.
Thus, we see the following analogies:

1. Input features in deep learning correspond to starting states, given as kets |ln〉,
in quantum mechanics.

2. Output features in deep learning correspond to goal states, or bras 〈JM |, in
quantum mechanics.

3. Steerable kernels in deep learning correspond to spherical tensor operators in
quantum mechanics.
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Note that we stick from now on to the view — somewhat unfamiliar in the physics lit-
erature — that spherical tensor operators are linear functions that map kets of quantum
number j to operators from states of quantum number l to states of quantum number
J . This is more abstract than the view that it is a collection of �nitely many operators
Km′j with certain transformation properties, however more suitable for our aims due
to the analogy with steerable kernels.

1.3. The Wigner-Eckart Theorem and Research
�estions

An important question in physics is how to describe such spherical tensor operators.
Crucially, spherical tensor operators are linear functions of the kets with orbital angu-
lar momentum quantum number j, and so, as all linear functions, they are completely
determined by their matrix elements with respect to bases of the involved spaces. If
[j], [l], and [J ] are the dimensions of the three involved spaces, then the spherical ten-
sor operator is described by a ([J ] × [l]) × [j]-tensor. The reason is that for each ket
of quantum number j, the result is a whole operator from states of quantum number
l to states of quantum number J . The number of matrix elements that need to be de-
termined then seems quite large and it might be a hassle to �gure it all out. However,
this concern neglects Equation 1.9 which tells us how such an operator changes under
rotation of the ket of quantum number j. This imposes strong relations on di�erent
matrix elements. In fact, these relations are so strong that one can show that there is
a single complex number that is able to completely characterize the spherical tensor
operator. This is the content of the famous Wigner-Eckart Theorem [10]:

Theorem 1.3.1. Assume K is a spherical tensor operator that maps kets of quantum
number j to operators from quantum states of quantum number l to quantum states
of quantum number J . Then there is a unique complex number, called reduced matrix
element and denoted by 〈J‖K‖l〉, that completely determinesK. More precisely, there are
coupling coe�cients 〈JM |jmln〉, the so-called Clebsch-Gordan coe�cients, which are
completely independent of the spherical tensor operatorK, such that the matrix elements
of K are given as follows:〈

JM |Kmj |ln
〉
= 〈J‖K‖l〉 · 〈JM |jmln〉 .

This makes us wonder: can this result be transported over into the realm of deep
learning in order to get a description of all possible steerable kernels? At �rst sight,
this seems di�cult: while we noted that spherical tensor operators are linear functions
mapping kets to operators, steerable kernels are certainly not linear in their input in
Rn in any meaningful sense. This leads to the following set of research questions:

1. Is it possible to “linearize” a steerable kernel K to a map K̂ that is linear in its
input?

7
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2. Does the linear version K̂ then share enough properties with spherical tensor oper-
ators from physics such that a generalized Wigner-Eckart Theorem can be proven
for it?

3. Is it possible to transfer this result to get a description of the original kernelK?

4. Does this result help us in parameterizing equivariant neural networks?

5. In what generality is all of this possible?

In the next section, we sketch the answers to these questions that we describe in detail
in the rest of this thesis.

1.4. A Wigner-Eckart Theorem for Steerable Kernels
of General Compact Groups

From now on, we write “order” instead of quantum number, since this is the more
common term in deep learning.
The answer to all the �rst four of the research questions is an unambiguous “yes”. The
last question does not have a de�nitive answer yet, however, we are able to completely
cover the theory of steerable CNNs onRn and gauge equivariant CNNs for compact struc-
ture groups with our investigations. Note that the following is just a sketch of the �nal
result. We will de�ne all the terminology in more detail and clarity in the chapters to
come.
We work in the following general setting: G is an arbitrary compact transformation
group that can, for example, act as a transformation group that �xes the origin in
Rn, including groups like O(n) or �nite groups as examples2. X is any orbit under
that action, i.e. a set of points in Rn that can be interchanged by the action of G3.
One can show that a theory of steerable kernels restricted to such orbits is enough in
order to recover steerable kernels that are described on the whole ofRn. Furthermore,
ρl and ρJ are irreducible representations of G corresponding to the input �eld and
the output �eld of the steerable kernel. More general �nite-dimensional input- and
output representations can be assembled from such irreducible ones, and so one does
not lose generality by restricting to irreducible representations. These representations
thereby either act on a real or a complex vector space, and in order to cover both, we
write K instead of R or C. Let [l] and [J ] be the dimensions of the input- and output
representation. Then the kernel is a function

K : X → K[J ]×[l].
2Note that we assume all topological spaces in this work to be Hausdor�. The reader should not worry

at this point, if she or he does not know this term.
3In the most general formulation we �nd, X is an arbitrary homogeneous space of G and thus need

not be thought of as being embedded inRn. For mitigating confusion, we mention that this homo-
geneous space does not have the same meaning as in the general theory of equivariant CNNs on
homogeneous spaces [11], which we discuss in more detail in the chapter on related work 5 and our
conclusion 7.
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We further need the following ingredients:

1. Ĝ is the set of isomorphism classes of so-called irreducible unitary representa-
tions of the compact group G.

2. For j ∈ Ĝ, mj is the number of times that the j’th representation appears as
a “direct summand” in the space of square-integrable functions on X , L2

K(X).
For this to make sense, this space of square-integrable functions also carries a
representation of the compact group G in a suitable way. In the examples we
describe in Chapter 6, the number mj is always 0 or 1, but other possibilities
exist in theory.

3. For each j ∈ Ĝ, let [j] be the dimension of the irreducible representation of
order j. Then for each i = 1, . . . ,mj and m = 1, . . . , [j], we let Y m

ji : X → K

be a square-integrable function such that the collection of all these functions
for �xed j and i is steerable. That is, it transforms under the transformation
of the space X via G in the same way as the basis vectors of the irreducible
representation of order j. We also call them harmonic basis functions in analogy
with the spherical harmonics. The collection of all these functions for all j, i,
and m forms an orthonormal basis of L2

K(X). These functions exist according
to the Peter-Weyl Theorem 2.1.22.

4. For all j, let [J(jl)] be the number of times that the representation ρJ appears
as a direct summand in the tensor product of the representations of order j and
l. This number can be di�erent from 0 or 1 as we will see in the Example of
SO(2)-equivariant CNNs in Section 6.2.

5. For each s = 1, . . . , [J(jl)], there exist so-called Clebsch-Gordan coe�cients
〈s, JM |jmln〉 as above. These are coupling coe�cients between basis vectors
of the irreducible representation of order J appearing in the tensor product of
representations of order j and order l. Di�erent from the situation in physics,
they now contain an additional index s, which can be imagined as an additional
quantum number.

We then prove the following Wigner-Eckart Theorem for steerable kernels, which we
state in more detail in Theorem 4.1.13:

Theorem 1.4.1 (Wigner-Eckart Theorem for steerable kernels). A steerable kernelK :
X → K[J ]×[l] is completely and uniquely determined by an arbitrary collection {cjis}
of maps cjis : K[J ] → K[J ], called endomorphisms, with the following indices and
properties:

1. The indices are j ∈ Ĝ, i = 1, . . . ,mj and s = 1, . . . , [J(jl)].

2. cjis : K[J ] → K[J ] is linear.

3. cjis commutes with the J ’th representation, that is: for all g ∈ G we have ρJ(g) ◦
cjis = cjis ◦ ρJ(g).
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The matrix elements of K(x) ∈ K[J ]×[l] are then for each x ∈ X given as follows:

〈JM |K(x)|ln〉 =
∑
j∈Ĝ

mj∑
i=1

[J(jl)]∑
s=1

[j]∑
m=1

[J ]∑
M ′=1

〈JM |cjis|JM ′〉 · 〈s, JM ′|jmln〉 ·
〈
Y m
ji |x

〉
.

Here, the 〈JM |cjis|JM ′〉 are the matrix elements of the function cjis, replacing the re-
duced matrix element in the original Wigner-Eckart Theorem. It is the only part of the
right-hand side of the formula that depends on the kernel K4.

〈
Y m
ji |x

〉
is “physics nota-

tion” for Y m
ji (x), where the overline denotes complex conjugation. This is the only part

in the right-hand side that depends on the input x. The Clebsch-Gordan coe�cients,
〈s, JM ′|jmln〉, do neither depend on the kernel, nor on the input.

An important remark is the following: As you may notice, the formerly “reduced ma-
trix element” in the original Wigner-Eckart Theorem 1.3.1 is now replaced by matrix
elements of the endomorphisms cjis that depend on the indices M and M ′. In the
physics context, one works over the complex numbers C and this dependence disap-
pears. The general concept that applies to both the complex and the real case is the
notion of an endomorphism as de�ned above. We call the 〈JM |cjis|JM ′〉 the gener-
alized reduced matrix elements of the kernel K .

1.5. What is this Theorem Good for?

Now that we have described this theorem, we would like to know what we hope to get
from it. After all, proving such a theorem in such generality is considerable work, and
we might wonder if it is worth the e�ort. The following reasons make us con�dent
that it is:

1. When a basis {cr | r ∈ R} of the space of endomorphisms of R[J ] is known,
then it can be shown, see Theorem 4.1.15, that this leads to a description of a
basis for the space of steerable kernels K : X → K[J ]×[l]. Namely, for each
j ∈ Ĝ, i = 1, . . . ,mj , s = 1, . . . , [J(jl)] and r ∈ R, one then obtains a basis
kernel Kjisr : X → K[J ]×[l] with the following matrix elements:

〈JM |Kjisr(x)|ln〉 =
[j]∑
m=1

[J ]∑
M ′=1

〈JM |cr|JM ′〉 · 〈s, JM ′|jmln〉 ·
〈
Y m
ji |x

〉
.

The collection of all Kjisr then forms a basis for steerable kernels X → K[J ]×[l].
This, in turn, tells us how to parameterize our equivariant neural network layer:

4The kernel depends on the cjis, since they determine it. But in the other direction, the kernel actually
also determines the cjis uniquely and we can therefore say that these endomorphisms and their
matrix elements “depend on the kernel”.
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We need to learn coe�cients wjisr ∈ K, and an arbitrary steerable kernel K is
then given by the linear combination

K =
∑
j∈Ĝ

mj∑
i=1

[J(jl)]∑
s=1

∑
r∈R

wjisr ·Kjisr.

2. For this to work, we need to be able to determine irreducible representations
for each j ∈ Ĝ, endomorphisms, Clebsch-Gordan coe�cients, and harmonic
basis functions Y m

ji in practice. We will see in examples in Chapter 6 that this is
generally a doable task.

3. The level of generality of this theorem means that we are relieved from think-
ing the same arguments over and over again in speci�c use cases. Our theo-
rem clearly separates the general structure of steerable kernels, which is always
the same, from the speci�cs of the situation at hand. These speci�cs are best
thought of as being independent of the theory of steerable CNNs, since they are
representation-theoretic in nature.

4. What we will see is that the search for a steerable kernel basis in speci�c use
cases never just provides us with this kernel basis. Arguably, along the way we
understand a great deal about the representation theory of the speci�c group in
question. This always has to happen anyway, but with our method, it is very
explicit and separated from the concerns of equivariant deep learning.

5. In the past, there was work deriving kernel constraints for steerable and gauge
equivariant CNNs in full generality, but no general solution strategy for this
constraint. This is the �rst general solution of how to parameterize steerable
and gauge equivariant kernels for compact transformation groups. Thus, it will
provide practitioners working with speci�c groups with a guide and a tool for
validating their �ndings. Since solutions in the past were often heuristic and did
in many cases not prove the completeness of the resulting kernel space, nor that
it was linearly independent, it seems reassuring to have this general result.

6. What seems especially useful is the identi�cation of endomorphisms as a central
building block of steerable kernels, which was probably not observed before.
This helps in a better understanding of the di�erences between kernel spaces of
di�erent transformation groups. For example, as we will see in examples that we
derive in Chapter 6, it helps to explain why SO(2)-equivariant networks over
the real numbers have more steerable kernels than over the complex numbers,
whereas for the group SO(3) this distinction is not present.

7. Since we emphasize the core abstract structure of the problem and solution
throughout this work, it may help for generalizing the results even further in the
future. This may provide general solutions for equivariant kernels that are de-
�ned on non-�at spaces, like spherical CNNs or general CNNs on homogeneous
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spaces [11, 12]. While the underlying topological spaces in these cases are as-
sumed to be homogeneous spaces, which is less general than the situation of
gauge equivariant CNNs, the kernel theory for general CNNs on homogeneous
spaces is actually a further generalization that we do not fully cover in this work.

8. Finally, the strong analogy between steerable kernels and spherical tensor oper-
ators, and the presence of a Wigner-Eckart Theorem in both settings, makes us
hope for fruitful collaborations between physicists, chemists, and deep learning
researchers. This might lead to further insights into the nature of learning in
the presence of symmetries and ultimately a greater understanding of inductive
biases in general. For physicists and chemists, it might help in creating machine
learning systems that make useful predictions for physical experiments.

1.6. A Tour through the Thesis
We now outline the structure of this thesis. In Chapter 2, we start by reviewing the
foundations of the representation theory of compact groups, including Haar measures
on the group and their homogeneous spaces. We will formulate the Peter-Weyl Theo-
rem 2.1.22 which we use in crucial steps in this work. It tells us how to view the space
of square-integrable functions on a homogeneous space itself as a representation of
the compact group, and how it splits into irreducible representations. In the second
half of this chapter, we go over some central steps of the proof of this theorem. We
do this since the theorem is usually found in the literature only for complex represen-
tations. We, however, also need it for real representations. This also leads to a slight
change in the formulation of the theorem itself concerning the multiplicities of the
irreducible representations in the regular representation.
Equipped with a clear understanding of the representation theory of compact groups,
we �rst engage with steerable CNNs in Chapter 3. We start with a description of steer-
able CNNs as they appear in the literature. Then, we reformulate steerable kernels in
more abstract terms as certain maps on general homogeneous spaces of a compact
group. We argue that this abstract formulation is all we need in order to determine
steerable kernels in practice. Once we have this abstract formulation, we will see that
this almost looks like spherical tensor operators — or their representation-theoretic
generalizations, representations operators — from physics. However, the linearity will
still be missing. In Theorem 3.1.7 we will then make a precise connection to repre-
sentation operators which are de�ned on the space of square-integrable functions on
the homogeneous space. We call these kernel operators. This link is the bridge that
we need in order to be able to transport physical results over into the realm of deep
learning. In the second half of the chapter, we do a thorough proof of Theorem 3.1.7.
In Chapter 4 we will then formulate and prove the Wigner-Eckart Theorem for steer-
able kernels of general compact groups 4.1.13 which we outlined before. This Theorem
is split into several parts: Firstly, a basis-independent Wigner-Eckart Theorem for ker-
nel operators, which is essentially a generalization of the usual Wigner-Eckart Theo-
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rem from physics. It makes in essential parts use of the Peter-Weyl Theorem outlined
in Chapter 2. Secondly, a basis-independent Wigner-Eckart Theorem for steerable
kernels, which uses the version for kernel operators and the correspondence between
steerable kernels and kernel operators outlined before in Chapter 3. And thirdly, a
basis-dependent version for steerable kernels that is identical to the formula outlined
in Theorem 1.4.1 in this introduction. We discuss some practical considerations for
how to apply this theorem in practice. The second half of the chapter contains a proof
of the �rst part of this Wigner-Eckart Theorem, which we leave out before.

In Chapter 5 we discuss related work. We �rst compare with prior work on steerable
CNNs and gauge equivariant CNNs, since this most obviously falls within the scope
of the theory outlined in this work. We then also discuss other work on the realm of
equivariant deep learning that is inspired by representation theory and physics. We
conclude by discussing purely theoretical work that was published before.

In Chapter 6, we then look at speci�c example applications of our theory. In these
examples, we look at speci�c compact transformation groups G, speci�c, relevant ho-
mogeneous spaces X of the group (basically just the orbit of the chosen action of G
on Rn) and one of the �elds R or C. For this combination we derive a basis for the
space of steerable kernels between arbitrary irreducible input- and output representa-
tions of the group. Speci�cally, we look at harmonic networks [4], SO(2)-equivariant
networks for real representations [9], Z2-equivariant networks for real representa-
tions, SO(3)-equivariant networks for both real and complex representations [6, 8],
and O(3)-equivariant networks for both real and complex representations. In these
results, we show that our theory is consistent with already implemented networks,
but also show how to parameterize steerable CNNs for cases that did to the best of
our knowledge not appear in published work yet. The investigation ofZ2-equivariant
CNNs will additionally show that our result is consistent with group convolutional
CNNs for the regular representation [2]. By using the same guideline for all examples,
we see that applying our theorem is a doable task that can be accomplished for all
compact groups that one wishes to investigate in practice.

Finally, in Chapter 7 we come to our conclusions and discuss future work, especially
centered around the question of how to further generalize the results in this work.

In Appendix A, we summarize some of the main notions from the theory of topolog-
ical spaces, metric spaces, normed vector spaces and (pre-)Hilbert spaces that we use
throughout this work.

Chapters 2, 3, and 4 contain the bulk of the theoretical work. We recommend the reader
to �rst only read the �rst halves of these chapters, Sections 2.1, 3.1 and 4.1, since they
contain the formulation of the most important results and the main intuitions, whereas
the second halves of these chapters mainly contain proofs that can be skipped when
going over the material for the �rst time. We only very occasionally make use of any
concepts de�ned in these second halves.
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1.7. Prerequisites
While we try to make this thesis accessible, it is clear at the same time that prior
knowledge in some areas of mathematics and deep learning is useful for appreciating
this work. In the realm of deep learning, we expect the reader to be familiar with con-
volutional neural networks (CNNs). Additionally, it is useful if the reader has engaged
before with the literature in equivariant deep learning, with the most important prior
sources to consult being Cohen and Welling [2], Weiler et al. [8] and Weiler and Cesa
[9].
With respect to mathematical prerequisites, it is clearly useful if the reader has prior
knowledge and intuitions in representation theory. We de�ne all of the notions that we
use, but it is impossible to give a thorough introduction to the way of thinking in this
area in such a short space. If the reader has prior knowledge only in the representation
theory of �nite groups, or maybe in the representation theory of algebras instead of
that of groups, then we expect that the intuitions carry over well enough in order to
read this thesis.
Additionally, the reader clearly needs a good foundation in linear algebra and calcu-
lus at the level of a �rst-year undergraduate in mathematics or related �elds. Addi-
tionally, the reader should have some prior knowledge in measure theory in order to
understand and appreciate the de�nition and properties of the so-called Haar mea-
sure. However, di�erent from many texts in the realm of arti�cial intelligence and
machine learning, this work does never make use of any techniques from statistics or
probability theory, so this is not required as prior knowledge.
In the appendix, we collect some results on topology, the theory of metric and normed
spaces, and (pre-)Hilbert spaces that we use throughout the text. The recommenda-
tion is similar as with the prerequisites in representation theory: It is useful to have
prior encounters with these areas of mathematics since we cannot give a thorough
introduction into the way of thinking of these subjects.

14



2. Representation Theory of
Compact Groups

In this chapter, we outline the main ingredients of the representation theory of com-
pact groups that we need for our applications to steerable CNNs. Usually, this theory
is only developed for representations over the complex numbers. However, since we
want to apply it also to steerable CNNs using real representations, we need to be a
bit more careful. In particular, we need to make sure that the Peter-Weyl Theorem is
correctly stated and proven.
The outline is as follows: In Section 2.1, we start by stating all the important de�ni-
tions and concepts from group theory and representation theory of (unitary) repre-
sentations that are needed for formulating the Peter-Weyl Theorem. After de�ning
Haar measures both for compact groups and their homogeneous spaces and shortly
discussing their square-integrable functions, we formulate the Peter-Weyl Theorem
2.1.22. In Section 2.2, then, we give a proof of this version of the Peter-Weyl Theo-
rem, carefully making sure to not use properties that are only true over C. In some
essential steps, mainly the density of the matrix coe�cients in the regular representa-
tion, we refer to the literature, since the proof clearly does not make use of C per se.
While we initially only give the proof for the regular representation, i.e. the space of
square-integrable functions on the group itself, we end this section with a discussion
of general unitary representations and, in particular, the space of square-integrable
functions for an arbitrary homogeneous space.
In the whole chapter, let K be the �eld of real or complex numbers.

2.1. Foundations of Representation Theory and the
Peter-Weyl Theorem

2.1.1. Preliminaries of Topological Groups and their Actions
In this section, we de�ne preliminary concepts from topological groups and their ac-
tions. This material can, for example, be found in detail in Arhangel’skii and Tkachenko
[13]. For the topological concepts that we use, we refer to Appendix A.1.

De�nition 2.1.1 (Group, Abelian Group). A group G = (G, ·, (·)−1, e), most often
simply written G, consists of the following data:

1. A set G of group elements g ∈ G.

15



2. Representation Theory of Compact Groups

2. A multiplication · : G×G→ G, (g, h) 7→ g · h.

3. An inversion (·)−1 : G→ G, g 7→ g−1.

4. A distinguished unit element e ∈ G. It is also called neutral element.

They are assumed to have the following properties for all g, h, k ∈ G:

1. The multiplication is associative: g · (h · k) = (g · h) · k.

2. The unit element is neutral with respect to multiplication: e · g = g = g · e.

3. The inversion of an element multiplied with itself is the neutral element: g ·
g−1 = g−1 · g = e.

A group is called abelian if, additionally, the multiplication is commutative: g ·h = h·g
for all g, h ∈ G. If this is the case, a group is often written as G = (G,+,−(·), 0).

If we consider several groups at once, say G and H , then we often do not distinguish
their multiplication, inversion, and neutral elements in notation. It will be clear from
the context which group the operation belongs to.

De�nition 2.1.2 (Subgroup). Let G be a group and H ⊆ G a subset. H is called a
subgroup if:

1. For all h, h′ ∈ H we have h · h′ ∈ H .

2. For all h ∈ H we have h−1 ∈ H .

3. The neutral element e ∈ G is in H .

Consequently, H is also a group with the restrictions of the multiplication and inver-
sion of G to H .

De�nition 2.1.3 (Group homomorphism). Let G and H be groups. A function f :
G → H is called a group homomorphism if it respects the multiplication, inversion,
and neutral element, i.e. for all g, h ∈ G:

1. f(g · h) = f(g) · f(h).

2. f(g−1) = f(g)−1.

3. f(e) = e.

The second and third properties automatically follow from the �rst and so do not need
to be veri�ed in order to prove that a certain function is a group homomorphism.

De�nition 2.1.4 (Topological Group, Compact Group). Let G be a group and T be a
topology of the underlying set ofG. ThenG = (G, T ) is called a topological group [13]
if both multiplication G×G→ G, (x, y) 7→ x · y and inversion G→ G, x 7→ x−1 are
continuous maps. Additionally, we always assume the topology to be Hausdor�.
A topological group is called compact if the underlying topological space is compact.
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2.1. Foundations of Representation Theory and the Peter-Weyl Theorem

From now on, all groups considered are compact topological groups. Furthermore,
wheneverG is a �nite group, we assume that it is a topological group with the discrete
topology, i.e. the topology with respect to which all subsets of G are open.
We will need the following de�nition in order to de�ne homogeneous spaces:

De�nition 2.1.5 (Group Action). LetG be a compact group andX a topological space.
Then a group action of G on X is a continuous function · : G × X → X with the
following properties:

1. (g · h) · x = g · (h · x) for all g, h,∈ G and x ∈ X .

2. e · x = x for all x ∈ X .

We will often simply write gx instead of g ·x. Also, note that the multiplication within
G is denoted by the same symbol as the group action on the space X .

De�nition 2.1.6 (Orbit). Let · : G×X → X be a group action. Let x ∈ X . Then it’s
orbit, denoted G · x, is given by the set

G · x := {g · x | g ∈ G} ⊆ X.

De�nition 2.1.7 (Transitive Action, Homogeneous Space). Let · : G ×X → X be a
group action. This action is called transitive if for all x, y ∈ X there exists g ∈ G such
that gx = y. Equivalently, each orbit is equal to X , that is: For all x ∈ X we have
G · x = X .
X is called a homogeneous space (with respect to the action) if the action is transitive,
X is Hausdor� and X 6= ∅.

The Hausdor� condition and non-emptiness in the de�nition of homogeneous spaces
is needed for Lemma 2.1.21, which is necessary to even de�ne a normalized Haar mea-
sure on a homogeneous space. Some texts in the literature may de�ne homogeneous
spaces without these conditions.

De�nition 2.1.8 (Stabilizer Subgroup). Let · : G × X → X be a group action. Let
x ∈ X . The stabilizer subgroup Gx is the subgroup of G given by

Gx := {g ∈ G | gx = x} ⊆ G.

Example 2.1.9. The multiplication of the group G is a group action of G on itself. G
is a homogeneous space with this action. Furthermore, for each g ∈ G the stabilizers
Gg are the trivial subgroup e.
In general, homogeneous spaces with the property that all stabilizers are trivial are
called torsors or principal homogeneous spaces. Principal homogeneous spaces are topo-
logically indistinguishable from the group itself.
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2. Representation Theory of Compact Groups

2.1.2. Linear and Unitary Representations
In this section, we de�ne many of the foundational concepts about linear and unitary
representations [14, 15].
Whenever we will consider linear or unitary representations of compact groups, we
want those representations to be continuous. This requires that the vector spaces on
which our groups act carry themselves a topology. Prototypical examples of such vec-
tor spaces are (pre-)Hilbert spaces. They are the main examples of vector spaces con-
sidered in this work. Foundational concepts about (pre-)Hilbert spaces can be found
in Appendix A.2. The most important di�erence between how we view pre-Hilbert
spaces and how it can often be found in the literature is that in this work, scalar
products are antilinear in the �rst component and linear in the second. This is the
convention usually chosen in physics.
For a vector space V over K let AutK(V ) be the group of invertible linear functions
from V to V . Sometimes in the literature, this is also written GL(V,K). The mul-
tiplication is given by function composition and the neutral element by the identity
function idV on V .

De�nition 2.1.10 (Linear Representation). Let G be a compact group and V be a
K-vector space carrying a topology, for example a (pre)-Hilbert space. Then a linear
representation of G on V is a group homomorphism ρ : G → AutK(V ) which is
continuous in the following sense: for all v ∈ V , the function

ρv : G→ V, g 7→ ρv(g) := ρ(g)(v)

is continuous. From the de�nition we obtain ρ(e) = idV , ρ(g · h) = ρ(g) ◦ ρ(h) and
ρ(g−1) = ρ(g)−1 for all g, h ∈ G. For simplicity, we also just say representation or G-
representation instead of linear representation. Instead of denoting the representation
by ρ, we often denote it by V if the function ρ is clear from the context.

Note that in this de�nition, V can be any abstract topological K-vector space with
a topology and does not need to be a space Kn or something similar. Consequently,
we usually do not view the functions ρ(g) as matrices, but as abstract linear automor-
phisms from V to V .

De�nition 2.1.11 (Intertwiner). Let ρ : G → AutK(V ) and ρ′ : G → AutK(V
′) be

two representations over the same group G. An intertwiner between them is a linear
function f : V → V ′ that is additionally equivariant with respect to ρ and ρ′ and
continuous. Equivariance means that for all g ∈ G one has f ◦ρ(g) = ρ′(g)◦f , which
means the following diagram commutes:

V V ′

V V ′

f

ρ(g) ρ′(g)

f
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2.1. Foundations of Representation Theory and the Peter-Weyl Theorem

De�nition 2.1.12 (Equivalent representations). Let ρ : G→ AutK(V ) and ρ′ : G→
AutK(V

′) be two representations. They are called equivalent if there is an intertwiner
f : V → V ′ that has an inverse. That is, there exists an intertwiner g : V ′ → V such
that g ◦ f = idV and f ◦ g = idV ′ .

In categorical terms, equivalent representations are isomorphic in the category of
linear representations. The reason we do not call them isomorphic is that there is
a stronger notion of isomorphism between representations which we will later use,
namely isomorphisms of unitary representations.

De�nition 2.1.13 (Invariant Subspace, Subrepresentation, Closed Subrepresentation).
Let ρ : G → AutK(V ) be a representation. An invariant subspace W ⊆ V is a linear
subspace of V such that ρ(g)(w) ∈ W for all g ∈ G and w ∈ W . Consequently, the
restriction ρ|W : G → AutK(W ), g 7→ ρ(g)|W : W → W is a representation as well,
called subrepresentation of ρ.
A subrepresentation is called closed if W is closed in the topology of V .

De�nition 2.1.14 (Irreducible Representation). A representation ρ : G → AutK(V )
is called irreducible if V 6= 0 and if the only closed subrepresentations of V are 0 and V
itself. An irreducible representation is also shortly called irrep.

De�nition 2.1.15 (Unitary group). Let V be a pre-Hilbert space. The unitary group
U(V ) of V is de�ned as the group of all linear invertible maps f : V → V that respect
the inner product, i.e. 〈f(x)|f(y)〉 = 〈x|y〉 for all x, y ∈ V . It is a group with respect
to the usual composition and inversion of invertible linear maps.

Note that if the �eld K is the real numbers, then what we call “unitary” is actually
called orthogonal, and the group would be denoted O(V ). However, the mathematical
properties are essentially the same, and since the term “unitary” is more widely used
(as normally, representations over the complex numbers are considered) we stick with
“unitary”.
More generally, we have the following:

De�nition 2.1.16 (Unitary Transformation). Let V, V ′ be two pre-Hilbert spaces. A
unitary transformation f : V → V ′ is a bijective linear function such that 〈f(x)|f(y)〉 =
〈x|y〉 for all x, y ∈ V . These can be regarded as isomorphisms between pre-Hilbert
spaces.

Note that unitary transformations are in particular isometries, i.e. they keep the dis-
tances of vectors with respect to the metric de�ned by the scalar product. For the
de�nition of this metric, see the discussion before and after De�nition A.1.14.

De�nition 2.1.17 (Unitary representation). Let V be a pre-Hilbert space and G a
group. Then a representation ρ : G → AutK(V ) is called a unitary representation if
ρ(g) ∈ U(V ) for all g ∈ G. We then write ρ : G→ U(V ).
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2. Representation Theory of Compact Groups

In this whole chapter, the space V of a unitary representation is supposed to be a
Hilbert space, instead of just a pre-Hilbert space. Only in chapter 4 will we consider
unitary representations on pre-Hilbert spaces. Note that all �nite-dimensional pre-
Hilbert spaces are already complete by Proposition A.2.16, so in these cases, there is
no di�erence. The same proposition also shows that for �nite-dimensional unitary
representations, we can ignore the topological closedness condition in order to check
whether it is irreducible. It will later turn out that all irreducible representations of a
compact group are automatically �nite-dimensional anyway, see Proposition 2.2.8, so
this further simpli�es our considerations.
As before with the unitary group, a unitary representation is actually called “orthog-
onal representation” when the �eld is the real numbers R. U(V ) is then replaced by
O(V ). We again stick with U(V ) whenever the �eld K is not speci�ed.

De�nition 2.1.18 (Isomorphism of Unitary Representations). Let ρ : G → U(V ),
ρ′ : G → U(V ′) be unitary representations and f : V → V ′ an intertwiner. f
is called an isomorphism (of unitary representations) if, additionally, f is a unitary
transformation. The representations are then called isomorphic. For this, we write
ρ ∼= ρ′ or V ∼= V ′ depending on whether we want to emphasize the representations
or the underlying vector spaces.

We note the following, which we will frequently use: due to the unitarity of ρ(g) for
a unitary representation ρ, we have ρ(g)∗ = ρ(g)−1, i.e. the adjoint is the inverse.
Adjoints are de�ned in De�nition A.2.11 and this statement is proven more generally
in Proposition A.2.13. Overall, this means that 〈ρ(g)(v)|w〉 = 〈v|ρ(g)−1(w)〉 for all
v, w and g.
In the end, it will turn out that the Peter-Weyl Theorem which we aim at is exclu-
sively a statement about unitary representations. One may then wonder whether this
is too restrictive. After all, the representations that we consider for steerable CNNs
(with precise de�nitions given in Section 3.1) are not necessarily unitary, and so it is
not immediately obvious how the Peter-Weyl Theorem will be able to help for those.
However, as it turns out, all linear representations on �nite-dimensional spaces can be
considered as unitary, and so the theory applies. We will discuss this in Proposition
2.1.20 once we understand Haar measures on compact groups.

2.1.3. The Haar Measure, the Regular Representation and the
Peter-Weyl Theorem

Now that we have introduced many notions in the representation theory of compact
groups, we can formulate the most important result, the Peter-Weyl Theorem that we
will use throughout this work. In the next section, we will then go through a step-
by-step proof of this theorem. The material in this section is based on Kowalski [15],
Nachbin and Bechtolsheim [16] and Knapp [14]. We thank Stefan Dawydiak for a
discussion about the Peter-Weyl Theorem over the real numbers [17].
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2.1. Foundations of Representation Theory and the Peter-Weyl Theorem

We assume that the reader knows what a measure is [18]. Let G be a compact group.
A standard result is that there exists a measure µ on G, called a Haar measure that,
among other properties, ful�lls the following:

1. µ(S) can be evaluated for all Borel sets S ⊆ G. Here, the Borel sets form the
smallest so-called σ-algebra that contains all the open sets.

2. In particular, we can evaluate µ(S) for all open or closed sets S ⊆ G.

3. The Haar measure is normalized: µ(G) = 1.

4. µ is left and right invariant: µ(gS) = µ(S) = µ(Sg) for all g ∈ G and S
measurable.

5. µ is inversion invariant: µ(S−1) = µ(S) for all S measurable.

These properties then translate into properties of the associated Haar integral: let
f : G→ K be integrable with respect to µ, then we obtain:

1.
∫
G
1dg = 1 for the constant function with value 1.

2.
∫
G
f(hg)dg =

∫
G
f(g)dg =

∫
G
f(gh)dg for all h ∈ G.

3.
∫
G
f(g−1)dg =

∫
G
f(g)dg.

Example 2.1.19 (Finite Groups). IfG is a �nite group with n elements, then the Haar
measure is just the normalized counting measure which assigns µ(g) = 1

n
for all g ∈

G. Each function f : G→ K is then integrable, and its integral is just given by∫
G

f(g)dg =
1

n

∑
g∈G

f(g).

In this special case, one can easily verify all properties of Haar measures and Haar
integrals stated above.

With this measure de�ned, we can already understand why all linear representations
on �nite-dimensional spaces can be considered as unitary:

Proposition 2.1.20. Let ρ : G → AutK(V ) be a linear representation on a �nite-
dimensional space V . Then there exists a scalar product 〈·|·〉ρ : V × V → K that makes
(V, 〈·|·〉) a Hilbert space and such that ρ becomes a unitary representation with respect
to this scalar product.

Proof. Since V is �nite-dimensional, there is an isomorphism of vector spaces to some
Kn. Consequently, there is some scalar product 〈·|·〉 : V × V → K that makes V
a Hilbert space. However, this scalar product does not necessarily make ρ a unitary
representation. However, we can de�ne 〈·|·〉ρ : V × V → K by

〈v|w〉ρ :=
∫
G

〈ρ(g)(v)|ρ(g)(w)〉 dg.
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2. Representation Theory of Compact Groups

That this integral exists is due to the continuity of linear representations and since
also the scalar product is continuous by Proposition A.2.7. It can easily be checked
that this construction makes V a Hilbert space. And due to the right invariance of
the Haar measure, we can check that ρ is a unitary representation with respect to this
scalar product. Namely, for arbitrary g′ ∈ G we have:〈

ρ(g′)(v)
∣∣ρ(g′)(w)〉

ρ
=

∫
G

〈
ρ(g)ρ(g′)v

∣∣ρ(g)ρ(g′)w〉dg
=

∫
G

〈
ρ(gg′)(v)

∣∣ρ(gg′)(w)〉dg
=

∫
G

〈
ρ(g)(v)

∣∣ρ(g)(w)〉dg
= 〈v|w〉ρ.

Now, for a measure space Y with corresponding measure µ, we can consider the space
of square-integrable functions on Y with values inK, denoted L2

K(Y ) (the measure is
omitted in the notation since there is usually no ambiguity). In these spaces, functions
are identi�ed if they coincide on a set with measure 0. L2

K(Y ) is clearly a vector space
overK, but it turns out that it can even be considered to be a Hilbert space as follows:

〈f |g〉 :=
∫
Y

f(y)g(y)dy.

Here, the overline means complex conjugation. The Hilbert space properties are easily
veri�ed.
In particular, one can consider the space L2

K(G) of square-integrable functions on
the group G itself. Now the claim is that L2

K(G) can actually be equipped with a
prototypical structure as a unitary representation over G which makes this space, in
some sense, “universal among unitary representations”. This works with the following
canonical representation, called the regular representation:

λ : G→ U(L2
K(G)), [λ(g)(f)] (g

′) := f(g−1g′).

continuity of this map is non-trivial and is for example shown in Knapp [14]. How-
ever, the more algebraic properties of being a unitary representation are quite easy to
appreciate. First of all, we clearly see that λ is a group homomorphism mapping each
group element to a linear automorphism. And �nally, the unitarity of this representa-
tion can be understood as a direct consequence of the properties of the Haar measure,
where we notably make only use of the left-invariance:

〈λ(g)(f)|λ(g)(h)〉 =
∫
G

[λ(g)(f)] (g′) · [λ(g)(h)] (g′)dg′

=

∫
G

f(g−1g′) · h(g−1g′)dg′
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2.1. Foundations of Representation Theory and the Peter-Weyl Theorem

=

∫
G

f(g′)h(g′)dg′

= 〈f |h〉 .

We saw in Example 2.1.9 that G is a homogeneous space with respect to the action on
itself. We can now ask whether these constructions can also work if X is an arbitrary
homogeneous space of G. This requires us to de�ne a suitable measure on X . This is
indeed possible. For a �xed element x∗ ∈ X , denote the stabilizer subgroup by H =
Gx∗ ⊆ G. Then the Hausdor� property ofX allows to write down a homeomorphism
betweenX andG/H , which in turn will allow us to use a canonical measure onG/H
that we study below. We denote cosets gH ∈ G/H by [g].

Lemma 2.1.21. Let X be a homogeneous space of the compact group G and H the
stabilizer subgroup of a �xed element x∗ ∈ X . Then the map

ϕ : G/H → X, [g] 7→ gx∗

is a homeomorphism. Furthermore, H is topologically closed.

Proof. Let ϕ̃ : G → X , g 7→ gx∗. This map is equal to the composition of the maps
G→ G×X , g 7→ (g, x∗) and G×X → X , (g, x) 7→ gx. Both these are continuous,
and thus ϕ̃ is continuous as well. Furthermore, note that if g−1g′ ∈ H , then there is
h ∈ H such that g′ = gh, and thus

ϕ̃(g′) = ϕ̃(gh) = (gh)x∗ = g(hx∗) = gx∗ = ϕ̃(g)

which means that by Proposition A.1.12, the map ϕ : G/H → X, [g] 7→ gx∗ is a well-
de�ned continuous map. It is surjective since the action is transitive by de�nition
of a homogeneous space. Furthermore, it is injective since if gx∗ = g′x∗ then x∗ =
(g−1g′)x∗ and thus g−1g′ ∈ H , which means [g] = [g′].
Overall, ϕ is a continuous bijective map from G/H to X . Furthermore, G/H is com-
pact since it is the continuous image of the compact group G under the projection
G→ G/H , see Proposition A.1.8. SinceX is Hausdor� by de�nition of homogeneous
spaces, ϕ is a homeomorphism according to Proposition A.1.9.
Now, since X is Hausdor� and ϕ is a homeomorphism, it follows that G/H is Haus-
dor� as well. Then, necessarily, H is a topologically closed subgroup of G, see Bour-
baki [19], Chapter III, Section 2.5, Proposition 13.

Every space G/H where H is topologically closed allows a measure µ with very sim-
ilar properties to those of G [16]. Since the stabilizer H is closed and X ∼= G/H by
Lemma 2.1.21, we can do these constructions for X as well, as we outline now. The
only properties that we now miss are the right-invariance and inversion-invariance:
We simply can’t ask for them since G does not naturally act on X from the right and
since we cannot invert elements in X . But left-invariance does hold and this means
that

λ : G→ L2
K(X), [λ(g)(f)] (x) := f(g−1x)
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2. Representation Theory of Compact Groups

makesL2
K(X) a unitary representation overG, as can be shown in the exact same way

as for L2
K(G).

Let Ĝ be the set of isomorphism classes of irreducible unitary representations over G.
Furthermore, let ρl : G → Vl be a �xed representative of such an isomorphism class
l ∈ Ĝ. We write isomorphism classes as “l” (and later also j and J ) in order to bring to
mind quantum numbers used in quantum mechanics. Recall from linear algebra that a
countable sum of subspaces of a vector space is called direct if no nontrivial subspace
of any of the considered spaces is contained in the sum of all the other considered
spaces1. Furthermore, recall that two subspaces U,W ⊆ V of a Hilbert space V are
called perpendicular or orthogonal if 〈u|w〉 = 0 for all u ∈ U and w ∈ W . We then
writeU ⊥ W . We can now formulate the Peter-Weyl Theorem. Intuitively, it says that
L2
K(X) splits into an orthogonal direct sum of the irreducible unitary representations,

where each irreducible unitary representation appears maximally as often as its own
dimension (and may not appear at all):

Theorem 2.1.22 (Peter-Weyl Theorem). LetG be a compact group. LetX be a homoge-
neous space. There are numbers ml ∈ N≥0 for all l ∈ Ĝ and closed-invariant subspaces
Vli ⊆ L2

K(X) for all l ∈ Ĝ and i ∈ {1, . . . ,ml} such that the following hold:

1. Vli ∼= Vl as unitary representations for all i and l.

2. ml ≤ dim(Vl) <∞ for all l.

3. Vli ⊥ Vl′j whenever l 6= l′ or i 6= j.

4.
⊕

l∈Ĝ
⊕ml

i=1 Vli is topologically dense inL
2
K(X), writtenL2

K(X) =
⊕̂

l∈Ĝ
⊕ml

i=1 Vli.

Now additionally consider G as a homogeneous space of itself. Then the same holds for
L2
K(G) as well, with numbers nl ≤ dim(Vl) <∞. We additionally have the following:

1. ml ≤ nl.

2. If K = C, then nl = dim(Vl).

Note that the representative Vl is not assumed to be embedded in L2
K(X). It is just

isomorphic, as a unitary representation, to each of the Vli ⊆ L2
K(X).

Example 2.1.23. For G = U(1) and K = C we have L2
C(U(1)) =

⊕̂
l∈ZVl1 and all

irreducible representations Vl are 1-dimensional.
For G = SO(2) (which is as a group isomorphic to U(1)) and K = R, we obtain
L2
R(SO(2)) =

⊕̂
l≥0Vl1, and all irreducible representations Vl with l ≥ 1 are two-

dimensional, whereas V0 is one-dimensional. Thus, here we see an example where the
multiplicity of most irreducible representations in the regular representation is 1 and
therefore smaller than their dimension, which cannot happen for representations over
the complex numbers.

1For a vector space V and subspaces (Ui)i∈I , their sum
∑

i∈I Ui is the set of sums
∑

i∈J ui with
J ⊆ I �nite and ui ∈ Ui for all i. It is itself a subspace of V .

24



2.2. A Proof of the Peter-Weyl Theorem

Both of these results are standard results in Fourier analysis. These examples are
discussed in more detail, especially with respect to their applications in deep learning,
in Section 6.1 and 6.2.

2.2. A Proof of the Peter-Weyl Theorem
This section presents a proof of the Peter-Weyl Theorem, as formulated in Theorem
2.1.22. We mostly skip the analytical parts of the proof2, since they are well-presented
in the literature and clearly work over both the real and complex numbers. However,
the more algebraic parts of the proof usually make use of the property of the complex
numbers to be algebraically closed, which does not hold for the real numbers. This is
invoked usually both in the proof of a version of Schur’s Lemma, as well as in prov-
ing Schur’s orthogonality. We therefore carefully adapt the proof of the Peter-Weyl
Theorem in the literature so that it also works over the real numbers, and formulate
and prove versions of Schur’s Lemma 2.2.6 and Schur’s orthogonality 2.2.7 that work
in general.
This section can be skipped completely if the interest is mainly in the applications
of the Peter-Weyl Theorem. In this case, the reader is advised to directly move on to
Chapter 3.
We note the following convention that applies to this section: for all unitary repre-
sentations ρ : G → U(V ) that we consider here, V is a Hilbert space (instead of just
a pre-Hilbert space).

2.2.1. Density of Matrix Coe�icients
An important ingredient in the construction of the spaces Vli that appear in the for-
mulation of the Peter-Weyl Theorem 2.1.22 are matrix coe�cients, which together
generate those spaces in case that one considers the regular representation on L2

K(G).

De�nition 2.2.1 (Matrix coe�cients). Let ρ : G→ U(V ) be a unitary representation.
A matrix coe�cient is any function of the form

ρuv : G→ K, g 7→ 〈u|ρ(g)(v)〉

for arbitrary u, v ∈ V .

The term “matrix coe�cient” comes from the analogy to matrix elements of linear
maps between pre-Hilbert spaces of which orthonormal bases are �xed. Later, in Def-
inition 4.1.9 we will also de�ne the notion of “matrix elements” separately. The term
“matrix coe�cient” only applies to unitary representations.
Remark 2.2.2. By de�nition of linear representations, the function g 7→ ρ(g)(v) is con-
tinuous. Thus, since scalar products of Hilbert spaces are also continuous as functions
on V × V , see Proposition A.2.7, every matrix coe�cient ρuv : G→ K is continuous.

2I.e., those parts that deal with approximations of square-integrable functions by matrix elements.
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As a continuous function on a compact space, it is of course also square-integrable, i.e.
ρuv ∈ L2

K(G). The Peter-Weyl Theorem basically asserts that these matrix coe�cients
can be considered as the building blocks of all square-integrable functions.
Furthermore, one may wonder why there is a complex conjugation in the de�nition.
The reason for this is that, otherwise, the isomorphism that we will construct in Propo-
sition 2.2.12 is not linear but conjugate linear. The reason why this can nevertheless be
called a matrix coe�cient is that this actually is the matrix coe�cient (without com-
plex conjugation) on a conjugate Hilbert space, as explained in the next Proposition,
which we took from Williams [20].

Proposition 2.2.3. Let ρ : G → U(V ) be a unitary representation on a Hilbert space
V with scalar multiplication ·V and scalar product 〈·|·〉V . We have the following:

1. Ṽ := V (equality as abelian groups) with α ·Ṽ v := α ·V v and 〈u|v〉Ṽ := 〈u|v〉 is
again a Hilbert space, the so-called conjugate Hilbert space of V .

2. ρ̃ : G→ U(Ṽ ) with ρ̃(g) := ρ(g) is again a unitary representation.

3. For the matrix coe�cients, we have ρ̃uv(g) = ρuv(g).

Proof. All these assertions are easy to check. As a demonstration, we do 3:

ρ̃uv(g) = 〈u|ρ̃(g)(v)〉Ṽ = 〈u|ρ(g)(v)〉V = ρuv(g).

That’s what we wanted to show.

As a consequence of this proposition, the matrix coe�cient ρuv(g) is equal to ρ̃uv(g),
thus being a “matrix coe�cient without complex conjugation above the scalar prod-
uct” of the conjugate unitary representation.

Theorem 2.2.4. The linear span of the matrix-coe�cients of �nite-dimensional, unitary,
irreducible representations of G are dense in L2

K(G) for all compact groups G.

Proof. For K = C, this is shown in Knapp [14]. The same proof, without adaptions,
also works forK = R. Note that the cited proof uses a de�nition of matrix coe�cients
without the complex conjugation. However, Proposition 2.2.3 shows those span the
same space, and thus we can apply it to our situation.

2.2.2. Schur’s Lemma, Schur’s Orthogonality and Consequences
In this section, we state and prove versions of Schur’s Lemma and Schur’s Orthogo-
nality [14] that are valid for both K = R and K = C.

Lemma 2.2.5. Let ρ : G → U(V ) and ρ′ : G → U(V ′) be unitary representations.
Furthermore, let f : V → V ′ be an intertwiner. Then the adjoint f ∗ : V ′ → V is also an
intertwiner.
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2.2. A Proof of the Peter-Weyl Theorem

Proof. The adjoint f ∗ : V ′ → V is the unique continuous linear function from V ′ to
V such that, for all v ∈ V and v′ ∈ V ′, we have

〈f(v)|v′〉 = 〈v|f ∗(v′)〉 .

This always exists according to De�nition A.2.11. Note that with f being an inter-
twiner and using the unitarity of the representations, we obtain for all g ∈ G, v ∈ V
and v′ ∈ V ′:

〈v|ρ(g)f ∗(v′)〉 =
〈
ρ(g−1)(v)

∣∣f ∗(v′)〉
=
〈
fρ(g−1)(v)

∣∣v′〉
=
〈
ρ′(g−1)f(v)

∣∣v′〉
= 〈f(v)|ρ′(g)(v′)〉
= 〈v|f ∗ρ′(g)(v′)〉

from which we deduce ρ(g)f ∗ = f ∗ρ′(g) from Proposition A.2.14 for all g ∈ G, i.e. f ∗
is an intertwiner.

Lemma 2.2.6 (Schur’s Lemma for unitary Representations). Assume ρ : G → U(V )
and ρ′ : G → U(V ′) are irreducible unitary representations with V �nite-dimensional.
Also assume that f : V → V ′ is an intertwiner. Then either f = 0 or there is µ ∈ R>0

such that µf is an isomorphism.

Proof. For this proof, we follow the exposition of Tao [21]. We thank Terrence Tao for
con�rming in the discussion below his blogpost that this lemma can also be proven
over the real numbers.
Let f ∗ : V ′ → V be the adjoint of f , which is also an intertwiner by Lemma 2.2.5. Now,
set ϕ := f ∗ ◦ f : V → V . As a composition of intertwiners, ϕ is also an intertwiner.
Furthermore, for arbitrary composable continuous linear functions between Hilbert
spaces one always has (g ◦ h)∗ = h∗ ◦ g∗ and (g∗)∗ = g, which easily follows from the
de�nition and uniqueness of adjoints. Consequently, we have

ϕ∗ = (f ∗ ◦ f)∗ = f ∗ ◦ (f ∗)∗ = f ∗ ◦ f = ϕ,

and so ϕ is self-adjoint. Thus, 〈ϕ(v)|w〉 = 〈v|ϕ(w)〉 for all v, w ∈ V , from which we
conclude that the matrix of ϕ corresponding to any orthonormal basis of V is Hermi-
tian or, if K = R, even symmetric. Such an orthonormal basis exists by Proposition
A.2.10. From the Spectral Theorem for Hermitian or symmetric matrices [22] we con-
clude that ϕ is unitarily (or for real matrices: orthogonally) diagonalizable with only
real eigenvalues. Thus, there is an orthogonal decomposition of V into eigenspaces:
V =

⊕
λ eigenvalue Eλ(ϕ).

Let Eλ(ϕ) be any eigenspace. We now claim that it is an invariant subspace of ρ.
Indeed, for all g ∈ G and v ∈ Eλ(ϕ) we have since ϕ is an intertwiner:

ϕ(ρ(g)(v)) = ρ(g)(ϕ(v)) = ρ(g)(λv) = λρ(g)(v).
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Since V is �nite-dimensional,Eλ(ϕ) is topologically closed by Proposition A.2.16, and
since V is irreducible, we necessarily have Eλ(ϕ) = 0 or Eλ(ϕ) = V . Since not all
eigenspaces can be zero, we conclude that there is an eigenvalue λ with Eλ(ϕ) = V ,
meaning ϕ = λ idV .
Assume f 6= 0. We now claim that λ > 0. Indeed, note that for all v ∈ V we have

λ‖v‖2 = 〈ϕ(v)|v〉
= 〈f ∗ ◦ f(v)|v〉
= 〈f(v)|f(v)〉
= ‖f(v)‖2.

Thus, if v ∈ V is any vector with f(v) 6= 0, then we obtain λ =
(‖f(v)‖
‖v‖

)
2 > 0.

Now de�ne g : V → V ′ as g = λ−
1
2f . g is clearly still an intertwiner. We can also

show it is an isometry:

〈g(v)|g(w)〉 = λ−1 〈f(v)|f(w)〉
= λ−1 〈ϕ(v)|w〉
= λ−1λ 〈v|w〉
= 〈v|w〉 .

Note that since V ′ is irreducible and f(V ) ⊆ V ′ topologically closed due to V being
�nite-dimensional, we necessarily have that f is surjective. Thus, we have shown that
µf with µ := λ−

1
2 is an isomorphism of unitary representations.

Proposition 2.2.7 (Schur’s Orthogonality). Let ρ : G→ U(V ) and ρ′ : G→ U(V ′) be
nonisomorphic irreducible unitary representations of the compact group G, of which at
least one is �nite-dimensional. Let ρuv and ρ′u′v′ be matrix coe�cients of them, which are
functions in L2

K(G) due to their continuity. Then they are orthogonal, i.e.
〈
ρuv
∣∣ρ′u′v′〉 =

0.

Proof. Without loss of generality, we can assume V ′ to be �nite-dimensional. Assume
that l : V ′ → V is any linear function. We can associate to it the function f : V ′ → V
given by

f(w′) :=

∫
G

ρ(g)lρ′(g)−1w′dg.

For all h ∈ G we have

ρ(h)fρ′(h)−1 =

∫
G

ρ(h)ρ(g)lρ′(g)−1ρ′(h)−1dg

=

∫
G

ρ(hg)lρ′(hg)−1dg

=

∫
G

ρ(g)lρ′(g)−1dg

= f,

28



2.2. A Proof of the Peter-Weyl Theorem

and thus ρ(h)f = fρ′(h), which means that f is an intertwiner. In this derivation,
ρ(h) could be put insight the integral since ρ(h) is continuous and an integral is a
limit over �nite sums, which commutes with the continuous ρ(h). By Schur’s Lemma
2.2.6, we necessarily have f = 0. Now look at the speci�c linear function l : V ′ → V
given by l(w′) := 〈v′|w′〉 v with the �xed vectors v, v′ corresponding to the matrix
coe�cients. We obtain f = 0, for f de�ned as before, and thus:

0 = 〈u|f(u′)〉 =
〈
u
∣∣∣ ∫

G

ρ(g)lρ′(g)−1(u′)dg
〉

=

∫
G

〈
u
∣∣ρ(g)lρ′(g)−1(u′)〉 dg

=

∫
G

〈
u
∣∣ρ(g) [〈v′∣∣ρ′(g)−1(u′)〉 v] 〉dg

=

∫
G

〈u|ρ(g)(v)〉 ·
〈
v′
∣∣ρ′(g)−1(u′)〉 dg

=

∫
G

〈u|ρ(g)(v)〉 · 〈u′|ρ′(g)(v′)〉dg

=

∫
G

ρuv(g)ρ′u
′v′(g)dg

=
〈
ρuv
∣∣ρ′u′v′〉

In this derivation, the integral could be put out of the scalar product since the scalar
product is continuous, see Proposition A.2.7, and since integrals are certain limits over
�nite sums, with which the scalar product commutes.

Note that there are more general Schur’s orthogonality relations in the case thatK =
C, see Knapp [14], Corollary 4.10. These then engage with the matrix coe�cients of
one and the same representation. This, together with a version of Schur’s Lemma that
only holds over C leads to the strengthening of the Peter-Weyl Theorem that shows
that the multiplicities nl are given by dim(Vl).

Proposition 2.2.8. All irreducible unitary representations of a compact group G are
�nite-dimensional.

Proof. Assume ρ : G→ U(V )was an irreducible unitary representation on an in�nite-
dimensional space V . Let ρuv be any of its matrix coe�cients. By Proposition 2.2.7,
and since an in�nite-dimensional representation can never be isomorphic to a �nite-
dimensional representation, ρuv is perpendicular to all matrix coe�cients of �nite-
dimensional irreducible unitary representations. Due to the linearity of the scalar
product, ρuv is perpendicular to the whole linear span of these matrix coe�cients and
thus to the topological closure of this span. The last step follows from the continuity
of the scalar product, see Proposition A.2.7. By Theorem 2.2.4 this closure is the whole
space L2

K(G). Therefore, ρuv is even perpendicular to itself, and thus ρuv = 0.
Overall, for arbitrary u, v ∈ V and g ∈ G we obtain 0 = ρuv(g) = 〈u|ρ(g)(v)〉 and
thus (by setting u = ρ(g)(v)) ρ(g)(v) = 0 and consequently ρ(g) = 0. We obtain
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2. Representation Theory of Compact Groups

ρ = 0, a contradiction. Thus in�nite-dimensional irreducible unitary representations
cannot exist.

As a consequence, we mention that the �niteness conditions in Schur’s Lemma and
Schur’s Orthogonality were not necessary to state since all irreducible unitary rep-
resentations are �nite-dimensional anyway. We obtain from this and from Schur’s
Lemma 2.2.6 that isomorphism classes and equivalence classes of irreducible unitary
representations are one and the same.

2.2.3. A Proof of the Peter-Weyl Theorem for the Regular
Representation

In this section, we engage with the Peter-Weyl Theorem for the regular representation
onL2

K(G). The case ofL2
K(X) for a homogeneous spaceX will be dealt with in Section

2.2.4. The core arguments in the proofs of this section are adapted from Williams [20].
As before, let Ĝ be the set of isomorphism classes of irreducible representations of G.
For l ∈ Ĝ let ρl be a representative for the isomorphism class l. Furthermore, for each
ρl : G → U(Vl), let v1l , . . . , v

dim(Vl)
l be an arbitrary orthonormal basis, which exists

due to Proposition A.2.10 (mostly written without the superscript, i.e. as v1, v2, . . . ,
if the corresponding isomorphism class is clear). Denote ρijl := ρv

ivj

l . Remember that
matrix coe�cients of unitary representations are continuous by Remark 2.2.2, and thus
functions in L2

K(G). Then, let E ⊆ L2
K(G) be the linear span of the matrix coe�cients

of all irreducible unitary representations. In the next Lemma, we want to show that
E is already spanned by the matrix coe�cients corresponding to representatives of
isomorphism classes and their orthonormal bases:

Lemma 2.2.9. We have

E = spanK

{
ρijl | l ∈ Ĝ, i, j ∈ {1, . . . , dim(Vl)}

}
.

Proof. First, we show that isomorphic representations don’t add distinct matrix co-
e�cients. Thus, let ρ ∼= ρl and let f : V → Vl be the corresponding isomorphism.
Then we have ρl(g) ◦ f = f ◦ ρ(g) and thus, since f is a unitary transformation,
ρ(g) = f ∗ ◦ ρl(g) ◦ f , for all g ∈ G, see Proposition A.2.13. Now let u, v ∈ V be
arbitrary. We obtain

ρuv(g) = 〈u|ρ(g)(v)〉
= 〈u|f ∗ρl(g)f(v)〉
= 〈f(u)|ρl(g)(f(v))〉
= ρ

f(u)f(v)
l (g),

which proves the �rst claim. Now we want to show that we only need to consider the
ρijl . Thus, let u, v ∈ Vl be arbitrary. They allow for linear combinations

u =
∑

i
λivi, v =

∑
i
µivi
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2.2. A Proof of the Peter-Weyl Theorem

with coe�cients λi, µi ∈ K. We obtain:

ρuvl (g) = 〈u|ρl(g)(v)〉

=
∑

i

∑
j
λiµj · 〈vi|ρl(g)(vj)〉

=
(∑

i

∑
j
λiµjρijl

)
(g),

thus showing that ρuvl is in the linear span of the matrix coe�cients corresponding to
the orthonormal basis. This concludes the proof.

For an isomorphism class l ∈ Ĝ, let El := span
{
ρijl | i, j ∈ {1, . . . , dim(Vl)}

}
⊆

L2
K(G) be the linear subspace of E generated by matrix coe�cients corresponding to

l. Let furthermore for all j the space E jl ⊆ El be the subspace generated by all ρijl
for i ∈ {1, . . . , dim(Vl)}. In the next lemma, we prove that these are actually closed
subrepresentations of the regular representation.

Lemma 2.2.10. For j ∈ {1, . . . , dim(Vl)}, E jl is a closed invariant subspace of L2
K(G).

In particular, El is a closed invariant subspace of L2
K(G).

Proof. Closedness follows immediately since this space is �nite-dimensional and thus
complete, see Proposition A.2.16. We need to show that λ(g)ρijl ∈ E

j
l for all g ∈ G

and all i, j. We can compute this directly:(
λ(g)ρijl

)
(g′) = ρijl (g

−1g′)

= 〈vi|ρl(g−1g′)(vj)〉
= 〈ρl(g)(vi)|ρl(g′)(vj)〉

=
〈∑

i′
〈vi′ |ρl(g)(vi)〉 vi′

∣∣ρl(g′)(vj)〉
=
∑

i′
〈vi′|ρl(g)(vi)〉 · 〈vi′ |ρl(g′)(vj)〉

=
∑

i′
〈vi|ρl(g−1)(vi′)〉ρi

′j
l (g′)

=
(∑

i′
ρii
′

l (g−1)ρi
′j
l

)
(g′)

where the coe�cients ρii′l (g−1) do not depend on g′. Consequently, λ(g)ρijl ∈ E
j
l .

Lemma 2.2.11. Let ρ : G → U(V ) and ρ′ : G → U(V ′) be unitary representations,
ρ being irreducible and V ′ 6= 0. Furthermore, assume that f : V → V ′ is a surjective
intertwiner. Then V ′ is also irreducible and f an equivalence.

Proof. Assume by contradiction that V ′ is reducible. Thus, there is a nontrivial closed
invariant subspace 0 ( W ( V ′. Now the following can easily be checked:

1. 0 ( f−1(W ) ( V .

2. f−1(W ) is an invariant subspace of V .
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3. f−1(W ) is a closed subset of V .

Once we have this, we have a contradiction to the fact that V is irreducible.
1 and 2 can be checked by the reader, and 3 follows since V is, as an irreducible rep-
resentation, �nite-dimensional by Proposition 2.2.8 and thus every subspace is closed
by Proposition A.2.16.
Therefore, we know that V ′ is irreducible. Now use Schur’s Lemma 2.2.6 to conclude
that f , being nonzero, necessarily is an equivalence.

Proposition 2.2.12. There is an equivalence of representations f jl : Vl → E jl given on
the orthonormal basis by f jl (v

i) = ρijl . Consequently, there is an isomorphism Vl ∼= E jl
of unitary representations.

Proof. We need to show that f jl is equivariant. Using the result of the derivation of
Lemma 2.2.10, we compute

f jl (ρl(g)(v
i)) = f jl

(∑
i′

〈
vi
′∣∣ρl(g)(vi)〉vi′)

=
∑

i′

〈
vi
′∣∣ρl(g)(vi)〉f jl (vi′)

=
∑

i′
〈vi|ρl(g−1)(vi′)〉ρi

′j
l

=
∑

i′
ρii
′

l (g−1)ρi
′j
l

= λ(g)ρijl

= λ(g)
(
f jl (v

i)
)
,

so f jl ◦ ρl(g) = λ(g) ◦ f jl for all g ∈ G, which is what we wanted to show. That f is an
intertwiner also requires it to be continuous: this follows since Vl is �nite-dimensional,
and so all linear functions on it are continuous.
Now, that f jl is even an equivalence follows from Lemma 2.2.11 by noting that E jl 6= 0.
Indeed, if it was zero then we would have ρijl (g) = 0 for all i, and thus ρ(g) would not
be invertible, in contrast that it is a unitary automorphism.
Thus, there is even an isomorphism Vl ∼= E jl by Schur’s Lemma 2.2.6.

Lemma 2.2.13. Let ρ : G → U(V ) be a unitary representation. Let V1 ⊆ V be a
subrepresentation. Then the orthogonal complement V ⊥1 is a subrepresentation as well.

Proof. We have 〈v|v1〉 = 0 for all v ∈ V ⊥1 and all v1 ∈ V1. Now, let g ∈ G be arbitrary.
From the unitarity of ρ we obtain

〈ρ(g)(v)|v1〉 =
〈
v
∣∣ρ(g−1)(v1)〉 = 0.

The last step follows from ρ(g−1)(v1) ∈ V1, which holds since V1 is a subrepresenta-
tion. Overall, this shows ρ(g)(v) ∈ V ⊥1 as well, and so this is a subrepresentation.

Lemma 2.2.14. Let ρ : G → U(V ) be a �nite-dimensional unitary representation.
Furthermore, assume thatW1,W2 are irreducible subrepresentations. If they are not iso-
morphic, then they are perpendicular, i.e. 〈w1|w2〉 = 0 for all w1 ∈ W1 and w2 ∈ W2.
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2.2. A Proof of the Peter-Weyl Theorem

Proof. Let P : V → W1 be the orthogonal projection from V to W1, de�ned as the
adjoint of the canonical inclusion i : W1 → V , i.e. de�ned by the property

〈w1|P (v)〉 = 〈i(w1)|v〉 = 〈w1|v〉

for all v ∈ V and w1 ∈ W1, see also Proposition A.2.15. We now show that P is
equivariant. For all g ∈ G, v ∈ V and w1 ∈ W1 we have:〈

w1

∣∣P (ρ(g)(v))〉 = 〈w1|ρ(g)(v)〉
=
〈
ρ(g−1)(w1)

∣∣v〉
=
〈
ρ(g−1)(w1)

∣∣P (v)〉
=
〈
w1

∣∣ρ(g)(P (v))〉,
where we used in the third step thatW1 is a subrepresentation. Since this holds for all
w1 ∈ W1, we obtain P (ρ(g)(v)) = ρ(g)(P (v)) by Proposition A.2.14 and overall that
P is equivariant.
In particular, also the restrictionP |W2 : W2 → W1 is equivariant. SinceW1 andW2 are
not isomorphic, we obtain by Schur’s Lemma 2.2.6 that P |W2 = 0, i.e. for all w1 ∈ W1

and w2 ∈ W2 we have 〈w1|w2〉 = 〈w1|P |W2(w2)〉 = 〈w1|0〉 = 0. Thus, W1 and W2 are
perpendicular as claimed.

Proposition 2.2.15. Let ρ : G → U(V ) be any �nite-dimensional unitary representa-
tion. Then V decomposes into an orthogonal direct sum

V =
n⊕
i=1

Vi

such that Vi ⊆ V are irreducible subrepresentations of ρ.

Proof. Let V1 be any irreducible subrepresentation of V : This can be obtained by not-
ing that if V is not already irreducible (in which case V1 = V ), then we �nd a nontrivial
subrepresentation 0 ( W ( V . By iteratively proceeding withW , we eventually need
to reach an irreducible representation since V is �nite-dimensional.
Now, let V ⊥1 be the orthogonal complement of V1. From Lemma 2.2.13 we know that
this is a subrepresentation of V . By induction on the dimension of V , and since V ⊥1 has
strictly smaller dimension, we can assume that V ⊥1 already splits into an orthogonal
direct sum of irreducible subrepresentations V ⊥1 =

⊕n
i=2 Vi, and overall, V =

⊕n
i=1 Vi

is the decomposition we were looking for.

The following proposition will not be used now, but we make use of it later when
showing that there are only �nitely many basis kernels in a steerable CNN for a com-
pact group:

Proposition 2.2.16 (Krull-Remak-Schmidt Theorem). In the situation of Proposition
2.2.15, the orthogonal direct sum decomposition is essentially unique. That is, the type
and multiplicities of the irreducible direct summands is always the same.
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Proof. If one has one decomposition of V in which an irreducible representation U
does not appear, then it cannot appear in any decomposition since U would be per-
pendicular to all the irreps in the decomposition of V by Lemma 2.2.14 and thus
zero. Therefore, the types of irreducible representations is always the same. That the
multiplicities are always the same follows by the same argument and for dimension-
reasons.

We can now �nally prove The Peter-Weyl Theorem 2.1.22 for the case that X = G:

Proof. By Proposition 2.2.15 and Lemma 2.2.10 there is some orthogonal decompo-
sition El =

⊕nl

i=1 Vli into irreducible invariant subspaces. Now assume that there
is an i such that Vli � Vl. By Proposition 2.2.12 this means that Vli � E jl for all
j = 1, . . . , dim(Vl). By Lemma 2.2.14 we obtain Vli ⊥ E jl for all j and thus, since∑

j E
j
l = El, we obtain Vli ⊥ El and overall Vli = 0, a contradiction.

Thus, the assumption was wrong and all Vli in the orthogonal direct sum are isomor-
phic to Vl.
Now let l 6= l′ and i, j be arbitrary. We have El ⊥ El′ by Proposition 2.2.7, and thus
in particular Vli ⊥ Vl′j . Furthermore, we have nl ≤ dim(Vl) since El =

∑dim(Vl)
j=1 E jl =⊕nl

i=1 Vli, and dim(Vl) <∞ by Proposition 2.2.8.
Moreover, we have

⊕
l∈Ĝ
⊕nl

i=1 Vli =
⊕

l∈Ĝ El = E , which is topologically dense in
L2
K(G) by Theorem 2.2.4.

Finally, that nl = dim(Vl) ifK = C follows by invoking a stronger version of Schur’s
orthogonality than we have developed, and which works only over the complex num-
bers [14].

2.2.4. A Proof of the Peter-Weyl Theorem for General L2
K(X)

Now let X be a homogeneous space of G. Then, as mentioned in Section 2.1.3, there
is a measure µ on X which is left-G-invariant [16] in the sense that we have for all
g ∈ G and all square-integrable functions f ∈ L2

K(X):∫
X

f(g · x)dx =

∫
X

f(x)dx.

Furthermore, let π : G → X be the projection given by g 7→ gx∗ for a �xed element
x∗ ∈ X . One important result is that there is a Fubini-like theorem for evaluation
of integrals on G using the invariant measure on X . Namely, for arbitrary x ∈ X ,
let g(x) ∈ G be any lift, i.e. any element in G with π(g(x)) = x. This exists since
the action is transitive. Let H := Gx∗ ⊆ G be the stabilizer subgroup. For a square-
integrable function f : G → K, we can then construct the average av(f) : X → K

by

av(f)(x) :=

∫
H

f(g(x)h)dh,

34



2.2. A Proof of the Peter-Weyl Theorem

where we integrate using the Haar-measure on H3. If it is hard to understand why
this is called an average, note that X ∼= G/H , i.e. points in X can be interpreted as
cosets of G, and then the average just averages over cosets4.
This construction is well-de�ned, i.e. does not depend on the speci�c choice of the lift
g(x). Indeed, let g(x)′ be another lift of x. Then g(x)′ = g(x)h′ for some h′ ∈ H , since
H is the stabilizer subgroup. Consequently, using the invariance of the Haar measure,
we see: ∫

H

f(g(x)′h)dh =

∫
H

f(g(x)h′h)dh =

∫
H

f(g(x)h)dh,

and thus the well-de�nedness of the average av(f) : X → K. Integration of f on the
whole of G is a “complete” average, and thus we can hope that averaging av(f) leads
to this complete integral. This is indeed the case, i.e. av(f) is square-integrable on X
and one has [16] ∫

G

f(g)dg =

∫
X

av(f)(x)dx. (2.1)

We will use this important result later in order to see that L2
K(X) embeds with good

properties into L2
K(G).

We now want to prove the Peter-Weyl Theorem for L2
K(X). We �rst present a general

argument showing an orthogonal decomposition ofL2
K(X) into irreducible subspaces,

and then use a speci�c argument to deduce that the multiplicities of irreducible sub-
representations are necessarily bounded by the multiplicities in L2

K(G).

Proposition 2.2.17. Let ρ : G→ U(V ) be any unitary representation. Then there is a
dense subrepresentation which splits as an orthogonal direct sum of irreducible subrepre-
sentations.

Proof. We sketch the proof in Kowalski [15], Corollary 5.4.2. In this book, the proof
is done only for the complex numbers C, but it is obvious that each step carries over
without any changes to arbitrary K ∈ {R,C}. The rough steps are as follows:

1. From ρ one builds a function ρ : L2
K(G) → HomK(V, V ), given by ρ(ϕ)(v) =∫

G
ϕ(g)ρ(g)(v)dg. This is analogous to our construction of kernel operators

from kernels, which we will handle in the next chapter, See Theorem 3.1.7.

2. Given v ∈ V �xed, one obtains the function ρv : L2
K(G) → V , ϕ 7→ ρ(ϕ)(v).

One can check easily that this is an intertwiner.

3. For each �nite-dimensional subrepresentation E ⊆ L2
K(G), the image ρv(E) ⊆

V is a �nite-dimensional subrepresentation of V .
3Such a Haar measure exists since H ⊆ G is a topologically closed subgroup of a compact group

by Proposition 2.1.21 and thus compact itself by standard topological results [23]. Note that this
measure ful�lls µ(H) = 1 and is thus not the same as the restriction of the measure on G to H .

4Here, G/H is the set of equivalence classes in G with respect to the equivalence relation g ∼ g′

if g−1g′ ∈ H , which has a quotient topology as explained in De�nition A.1.11. The equivalence
classes are given by the cosets gH for g ∈ G.
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2. Representation Theory of Compact Groups

4. For v 6= 0, using analytical arguments and the Peter-Weyl Theorem for L2
K(G),

one can prove that there is an E such that ρv(E) ⊆ V is not zero.

Having that, one can use Proposition 2.2.15 in order to deduce that ρv(E) contains an
irreducible subrepresentation, and so does V .
With this at hand, one can proceed inductively as follows: Given an irreducible sub-
representation V1 ⊆ V , one can consider the orthogonal complement V ⊥1 , which is
by Lemma 2.2.13 again a subrepresentation of V . Thus, this also has, by the same
argument as above, an irreducible subrepresentation V2 and so on. By induction (or
better: using Zorn’s Lemma), one can then “�ll up” V with orthogonal irreducible
subrepresentations, deducing the result.

Consequently, since L2
K(X) carries a unitary representation of G by [λ(g)(ϕ)] (x) :=

ϕ(g−1x), we can deduce that it contains a dense subrepresentation which splits as an
orthogonal direct sum of irreducible subrepresentations. But we would like to know
more details about this, in particular the multiplicities of the irreps. For this to work,
we want to embed L2

K(X) into L2
K(G) and thus deduce a more speci�c result from the

decomposition of L2
K(G).

Let as before x∗ ∈ X be an arbitrary point and let π : G→ X be the projection given
by π(g) := gx∗. Consider the function π∗ : L2

K(X)→ L2
K(G) given by π∗(ϕ) := ϕ◦π.

It is unclear a priori whether this is well-de�ned: For example, it might be that an
f : X → K which is zero outside a measure 0 set gets lifted to π∗(f) : G→ K which
does not have this property, and thus π∗ would not be an actual function5. Thus, we
need some lemmas:

Lemma 2.2.18. Let f : X → K be square-integrable. Then we have av(π∗(f)) = f .

Proof. Using Equation 2.1 and that H is the stabilizer subgroup we compute:

av(π∗(f))(x) =

∫
H

π∗(f)(g(x)h)dh

=

∫
H

f(π(g(x)h))dh

=

∫
H

f(π(g(x)))dh

=

∫
H

f(x)dh

= f(x)

∫
H

1dh

= f(x)µ(H)

= f(x).

5Remember that functions in L2
K(X) for any measurable space X are identi�ed if they agree outside

a set of measure 0.
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2.2. A Proof of the Peter-Weyl Theorem

Lemma 2.2.19. Let A ⊆ X be any measurable set. Let 1A : X → {0, 1} ⊆ K be its
indicator function. Then π∗(1A) = 1π−1(A).

Proof. This can easily be checked.

Lemma 2.2.20. Let ϕ : X → K be zero outside a measure zero set A. Then π∗(ϕ) is
zero outside π−1(A) which is also a measure zero set.

Proof. If g /∈ π−1(A) then π(g) /∈ A and thus:

0 = ϕ(π(g)) = π∗(ϕ)(g)

which proves the �rst statement. The second is shown as follows using both Lemmas
2.2.18 and 2.2.19 and Equation 2.1:

µ(π−1(A)) =

∫
G

1π−1(A)(g)dg

=

∫
G

π∗(1A)(g)dg

=

∫
X

av(π∗(1A))(x)dx

=

∫
X

1A(x)dx

= µ(A)

= 0,

thus showing what was claimed.

Thus, our concern about well-de�nedness as a function is invalid and we can now
prove an embedding result:

Proposition 2.2.21. π∗ : L2
K(X)→ L2

K(G) is a well-de�ned intertwiner and a unitary
transformation, i.e. for all ϕ, ψ ∈ L2

K(X) we have 〈π∗(ϕ)|π∗(ψ)〉L2
K
(G) = 〈ϕ|ψ〉L2

K
(X).

Proof. For well-de�nedness, we still need to show thatπ∗(ϕ) is again square-integrable
for square-integrable ϕ : X → K. This is indeed the case due to Equation 2.1.
Namely, let |π∗(ϕ)|2 : G → K and consider its average av(|π∗(ϕ)|2). Clearly, we
have |π∗(ϕ)|2 = π∗(|ϕ|2) and thus, using Lemma 2.2.18, av(|π∗(ϕ)|2) = |ϕ|2. We
obtain: ∫

G

|π∗(ϕ)|2(g)dg =
∫
X

av(|π∗(ϕ)|2)(x)dx

=

∫
X

|ϕ(x)|2dx

<∞.
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Thus, π∗ is not only well-de�ned but even ful�lls ‖π∗(ϕ)‖L2
K
(G) = ‖ϕ‖L2

K
(X), which

also shows the continuity of π∗. With similar arguments, we show that π∗ respects
the whole scalar product, i.e. is a uniform transformation:

〈π∗(ϕ)|π∗(ψ)〉L2
K
(G) =

∫
G

(
π∗(ϕ) · π∗(ψ)

)
(g)dg

=

∫
X

av(π∗(ϕ) · π∗(ψ))(x)dx

=

∫
X

ϕ(x)ψ(x)dx

= 〈ϕ|ψ〉L2
K
(X) .

The step from the second to the third line follows as before by noting that π∗(ϕ) ·
π∗(ψ) = π∗(ϕ · ψ) and invoking Lemma 2.2.18 again.
The linearity of π∗ is obvious, and the equivariance is done as follows: note that for
arbitrary g, g′ ∈ G we have π(g−1g′) = (g−1g′)x∗ = g−1(g′x∗) = g−1π(g′) and
therefore:

[π∗(λ(g)ϕ)] (g′) = (λ(g)ϕ)(π(g′))

= ϕ(g−1π(g′))

= ϕ(π(g−1g′))

= π∗(ϕ)(g−1g′)

= [λ(g)π∗(ϕ)] (g′).

Thus, we shown everything which was to show.

Thus, π∗ : L2
K(X)→ L2

K(G) is an embedding which even preserves the scalar product.
We can therefore view L2

K(X) as a subspace: L2
K(X) ⊆ L2

K(G)
6.

We can �nally complete the proof of the Peter-Weyl Theorem 2.1.22:

Proof of Theorem 2.1.22. Assume that⊕
l∈Ĝ

ml⊕
i=1

Vli ⊆ L2
K(X) ⊆ L2

K(G)

is a dense subspace such that the direct sum is orthogonal, where Vli ∼= Vl for all l, i.
This exists by Proposition 2.2.17.
Remember that nl denotes the multiplicity of Vl as a subrepresentation in L2

K(G). We
now want to show that ml ≤ nl. Since Vli is perpendicular to all El′ with l′ 6= l by
Lemma 2.2.14, Vli must be contained in the orthogonal complement of

⊕
l′ 6=l El′ . This

is exactly El, which we show in a �nal lemma after this proof. So Vli ⊆ El for all i.
Thus, we obtain the result ml ≤ nl by dimension reasons. This was all there was left
to show.

6In this notation, we suppress that this embedding depends on the speci�c base point x∗ which was
chosen. For another base point, the embedding di�ers by a unitary automorphism on L2

K(G) as the
reader may want to check.
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2.2. A Proof of the Peter-Weyl Theorem

Lemma 2.2.22. We have El =
(⊕

l 6=l′∈Ĝ El′
)
⊥

Proof. We already know El ⊆
(⊕

l 6=l′∈Ĝ El′
)
⊥ from Proposition 2.2.7. Now, assume

this inclusion is not an equality. Then there is v /∈ El such that v ∈
(⊕

l 6=l′∈Ĝ El′
)
⊥.

The space spanK (v, El) does contain an orthonormal basis by Proposition A.2.10,
where the procedure of Gram-Schmidt orthonormalization allows starting with an
orthonormal basis of El and to �ll it up to one of the whole space spanK (v, El). Thus,
we can assume v ∈ E⊥l as well. Overall, v ∈

(⊕
l′∈Ĝ El′

)
⊥, and by taking topological

closure and using that the scalar product is continuous by Proposition A.2.7, obtain
v ∈

(⊕̂
l′∈ĜEl′

)
⊥ = (L2

K(G))
⊥ by the Peter-Weyl Theorem for the regular representa-

tion. This means v = 0 ∈ El, a contradiction to v /∈ El.
Thus, our assumption is wrong and such a vector v cannot exist. We obtain the equality
as desired.
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3. The Correspondence between
Steerable Kernels and Kernel
Operators

In this chapter, we formulate and prove Theorem 3.1.7, which gives a precise one-to-
one correspondence between steerable kernels on the one hand, and certain represen-
tation operators which we call kernel operators on the other hand.
This correspondence will be the main bridge between the theory of steerable CNNs
and the mathematical foundations of quantum mechanics that underlies this work. It
will allow us in Chapter 4 to crucially exploit an insight from quantum mechanics,
namely the Wigner-Eckart Theorem, in order to better understand steerable kernels
and to ultimately get a complete description of steerable kernel bases. In this sense,
the correspondence established in this chapter may be seen as the main theoretical
insight of this work.
The structure is as follows: In Section 3.1, we formulate the correspondence between
steerable kernels and kernel operators. We do this by �rst studying steerable CNNs
and the kernel constraint, which progressively leads us to consider steerable kernels
on homogeneous spaces of general compact groups. This abstract formulation of steer-
able kernels will have apparent similarities to the concept of representation operators
from physics, which we study next. However, they importantly di�er in the fact that
steerable kernels are not linear, whereas representation operators are, a di�erence that
we need to bridge. Finally, after de�ning kernel operators as special representation op-
erators, we give the formulation of the correspondence in Theorem 3.1.7 and shortly
give some intuitions about why it is true. Then, in Section 3.2, we give a detailed and
rigorous proof of this correspondence.
As in Chapter 2, K is either of the two �elds R and C.

3.1. Fundamentals of the Correspondence

3.1.1. Steerable Kernels and the Restriction to Homogeneous
Spaces

In this section, we shortly explain steerable CNNs and reduce them conceptually to a
form that is most useful for the correspondence between steerable kernels and kernel
operators that we want to develop in this chapter. The concept of steerable CNNs
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3.1. Fundamentals of the Correspondence

outlined here essentially follows Weiler and Cesa [9]. In a nutshell, steerable CNNs
work as follows:
The network is supposed to process data given as functions Rn → Kc, where n is the
dimension of the space where the input-features are de�ned. Such functions are also
called feature �elds. c is the dimension of the features themselves, i.e. the number of
channels. For example, planar RGB-images correspond to the case n = 2 and c = 3.
Furthermore, a compact group G, see De�nition 2.1.4, is considered that acts on Rn

by rotations or re�ections or both, for example the special orthogonal group SO(n),
the orthogonal group O(n) or the �nite groups CN or DN 1. Then for each layer, the
input and output has a certain type, i.e. representation, which may di�er from layer to
layer. That is, the input (and output as well) consists of a function f : Rn → Kc, and
G acts onKc with a linear representation ρ, see De�nition 2.1.10. This action induces
an action of the semi-direct product (Rn,+) o G on the space of all signals2, where
t ∈ (Rn,+) and g ∈ G:( [

IndR
noG

G ρ
]
(tg) · f

)
(x) := ρ(g) · f(g−1(x− t)).

Let the kernel that “maps” between the layers by convolution3 be given by a function

K : Rn → Kcout×cin .

That is, for an input fin : Rn → Kcin , the output fout : Rn → Kcout is given by

fout(x) = [K ? fin] (x) =

∫
Rn

K(y − x)fin(y)dy,

where K(y − x) ∈ Kcout×cin is viewed as a linear transformation from Kcin to Kcout .
The goal is now to �nd kernelsK such that convolution with these kernels commutes
with the induced actions on the input and output �elds. That is, for all input �elds fin
and for all t ∈ Rn and g ∈ G we want the following property:

K ?
( [

IndR
noG

G ρin
]
(tg) · fin

)
=
[
IndR

noG
G ρout

]
(tg) · (K ? fin)

It was shown in Weiler et al. [8] that a kernel K has this equivariance property if and
only if, for all g ∈ G and x ∈ Rn, it holds:

K(gx) = ρout(g) ◦K(x) ◦ ρin(g)−1. (3.1)

This thesis will create a general theory for how to solve this kernel constraint, which
means to �nd a parameterization for the space of all kernels that ful�ll this constraint.

1We will study some of these groups in the Examples in Chapter 6.
2The semidirect productRnoG can be imagined as the smallest subgroup of the group of all isometries

ofRn that contains both the translationsRn and the transformationsG. It is not important to know
the abstract de�nition of a semidirect product in our context.

3The operation is actually a so-called “correlation”, but the term “convolution” is more widespread in
the deep learning context and we follow this convention.
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3. The Correspondence between Steerable Kernels and Kernel Operators

We now explain how to make this problem more tractable: formally, the action of G
on Rn is a group action as in De�nition 2.1.5. However, it cannot be transitive as in
De�nition 2.1.7 since G is compact andRn is not. ThusRn splits into a disjoint union
of orbits, see De�nition 2.1.6, of the action:

Rn =
⊔
k∈K

Xk.

That this is a disjoint union can be explained as follows: de�ne the relation ∼ on Rn

by x ∼ x′ if gx = x′ for some g ∈ G. This is then an equivalence relation, and so
Rn splits into a disjoint union of equivalence classes. One then can show that these
equivalence classes are precisely the orbits of the group action. For example, such
orbits take the form of spheres Sn−1 if G = SO(n) or G = O(n) and the form of a
�nite set of points if G = CN or G = DN .
The idea is now that the kernel constraint 3.1 only constrains the behavior of the
kernel at each orbit individually, and thus a solution on each orbit can be “patched
together” to a solution on the whole of Rn. Indeed, assume that Kk : Xk → Kcout×cin

individually ful�ll the kernel constraint, which means that for all xk ∈ Xk and g ∈ G
we have

Kk(gxk) = ρout(g) ◦Kk(xk) ◦ ρin(g)−1.

Then, de�ne the patch of these orbit-kernels by K : Rn → Kcout×cin as K(x) =
Kk(x) if x ∈ Xk. This is well-de�ned since each x is in precisely one orbit. Then
clearly, K ful�lls the kernel constraint 3.1. Moreover, each kernel K which ful�lls the
kernel constraint emerges from such a construction, since we can simply set Kk :=
K|Xk

. Overall, we see that we can restrict our attention to orbits. In Weiler et al. [24]
and later Weiler et al. [8], a discretized implementation is done where the kernel is
discretized into �nitely many orbits with a smooth Gaussian radial pro�le. We will
come back to these practical questions of parameterization in Remark 4.1.18, once we
have fully developed the theory of steerable CNNs.

3.1.2. An Abstract Definition of Steerable Kernels
Motivated by the discussion in the last section, we now de�ne steerable kernels in pre-
cise terms and will stick to that de�nition throughout this work. The de�nition will be
more abstract than usual in the deep learning community, but we are rewarded since
such an abstract de�nition makes it easier to apply theoretical results from mathemat-
ics and physics.
Without loss of generality, we will in the rest of this work only consider kernels on
orbits. Thus, let X := G · x be an arbitrary orbit. We consider steerable kernels
K : X → Kcout×cin . Note that the restriction of the action G × Rn → Rn to X ,
written G × X → X , makes X to a homogeneous space of G, see De�nition 2.1.7.
Thus, instead of viewingX as a subset ofRn, we viewX as an arbitrary homogeneous
space of an arbitrary compact group G. Notably, this framework is more general than
usually studied in the context of steerable CNNs on Rn, since we allow also groups
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that are not Lie groups and homogeneous spaces which are not naturally embedded
in an Rn, as well as �nite homogeneous spaces of �nite groups all at the same time.
Furthermore, note that Kcout×cin can be viewed as the space of linear functions from
Kcin to Kcout , written HomK(K

cin ,Kcout). This is useful since it allows us to view
Kcin and Kcout in more abstract terms. Namely, we replace these spaces by arbitrary
�nite-dimensional K-vector spaces Vin and Vout together with linear representations
ρin : G→ AutK(Vin) and ρout : G→ AutK(Vout).
Overall, this means that steerable kernels are certain (not linear in a meaningful sense)
maps K : X → HomK(Vin, Vout). The only property they need to ful�ll is the kernel
constraintK(gx) = ρout(g)◦K(x)◦ρin(g)−1 for all g ∈ G and x ∈ X . This looks a bit
like an equivariance property: we plug the “rotation” gx into K and express that this
is the same as a certain transformation of K(x) in the output-space, which consists
of linear functions from Vin to Vout. This can be made more precise by de�ning the
Hom-representation on HomK(Vin, Vout):

De�nition 3.1.1 (Hom-Representation). Let ρin : G → AutK(Vin) and ρout : G →
AutK(Vout) be two �nite-dimensional G-representations over the �eld K. The space
HomK(Vin, Vout) ofK-linear (not necessarilyG-equivariant) functions from Vin to Vout
also carries a G-representation, with action

[ρHom(g)] (f) := ρout(g) ◦ f ◦ ρin(g)−1.

We call this the Hom-representation.

Remark 3.1.2. Of course, one needs to check that this is indeed a linear representa-
tion. Continuity follows from the continuity of ρin and ρout as follows: the topology
on HomK(Vin, Vout) is just the Euclidean topology of Kcout×cin coming from a basis of
Vin and Vout. In these bases, ρin(g) and ρout(g) are given by matrices. All matrix coe�-
cients are continuous by Remark 2.2.2. Now, in order to show that ρHom is continuous,
pick a �xed element f ∈ Kcin×cout . One needs to show that the map

ρfHom : G→ Kcin×cout , g 7→ ρout(g) ◦ f ◦ ρin(g−1)

is continuous. Since all matrix coe�cients are continuous and since also the inversion
G → G, g 7→ g−1 is continuous by the de�nition of a topological group, the map
ρfHom is basically just a stacked linear combination of continuous functions and thus
continuous itself.
The linearity of each ρHom(g) is also clear. So what needs to be checked is that ρHom

is a group homomorphism. And indeed, it is, exploiting the corresponding property
of ρin and ρout:

[ρHom(gg
′)] (f) = ρout(gg

′) ◦ f ◦ ρin(gg′)−1

= ρout(g) ◦
(
ρout(g

′) ◦ f ◦ ρin(g′)−1
)
◦ ρin(g)−1

= [ρHom(g)]
(
[ρHom(g

′)] (f)
)

= [ρHom(g) ◦ ρHom(g
′)] (f),

and so the claim follows.
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With this de�nition in mind, steerable kernels K : X → HomK(Vin, Vout) are just
functions with the property K(gx) = [ρHom(g)] (K(x)). This is the equivariance-
view we were looking for. Summarizing, we have the following abstract de�nition of
steerable kernels:

De�nition 3.1.3 (Steerable Kernel). Let G be any compact group and X be any ho-
mogeneous space of G. Furthermore, let ρin : G → AutK(Vin) and ρout : G →
AutK(Vout) be �nite-dimensional representations ofG. We assume thatHomK(Vin, Vout)
is equipped with the Hom-representation ρHom.
A steerable kernel is an equivariant functionK : X → HomK(Vin, Vout), i.e. a function
such that

K(gx) = [ρHom(g)] (K(x)) (3.2)

for all g ∈ G and x ∈ X . We denote the vector-space of all these kernels by

HomG(X,HomK(Vin, Vout)) = {K : X → HomK(Vin, Vout) | K is a steerable } .

Notably, steerable kernels are not linear in a meaningful sense with respect to their
input.

That the space of steerable kernels forms a vector space, as claimed in this de�nition,
can easily be checked. In the next section, we will see that De�nition 3.1.3 looks
suspiciously like representation operators considered in physics.

3.1.3. Representation Operators and Kernel Operators
Now that we have a clear abstract idea of what steerable kernels are, we can begin to
establish analogies to physics. In this section, we therefore formulate what so-called
representation operators are, which play a central role in quantum physics [10] and
will then formulate the main theorem of this chapter, Theorem 3.1.7. This establishes
the bridge between the realms of deep learning and quantum physics that we need in
order to exploit physical insights.
Without spending too much time on the physical intuitions behind this mathematical
formalism, for which we refer back to the introduction, we right away come to the
main de�nition. It is basically a mathematical formalization and generalization of the
concept of a spherical tensor operator. We thereby restrict to �nite-dimensional input-
and output representations due to our speci�c applications:

De�nition 3.1.4 (Representation Operator). Let ρin : G→ AutK(Vin) and ρout : G→
AutK(Vout) be �nite-dimensionalG-representations. Let λ : G→ AutK(T ) be a third
G-representation, not necessarily �nite-dimensional. Then a representation operator
is an intertwiner K : T → HomK(Vin, Vout), where the right space is equipped with
the Hom-representation as in De�nition 3.1.1. We denote the vector space of all these
representation operators by

HomG,K(T,HomK(Vin, Vout)) = {K : T → HomK(Vin, Vout) | K is an intertwiner} .
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Note that representation operators are by de�nition linear, which is a requirement
that needs to be ful�lled for the standard Wigner-Eckart Theorem. We clearly see
strong similarities between this de�nition and the formalization of steerable kernels in
De�nition 3.1.3. The main di�erence is that we assume representation operators to be
linear. This is in notation captured by the subscriptK that we put in the corresponding
Hom-space. One may think that there is another di�erence, namely coming from
the fact that intertwiners are by de�nition continuous with respect to the topologies
involved. Two things need to be said about this:

1. First of all, one may wonder what continuity for representation operators actu-
ally means. This can be clari�ed as follows: By assumption, G-representations
are always on vector spaces with topologies, and thus T has a topology. Fur-
thermore, in Remark 3.1.2 we clari�ed the topology on HomK(Vin, Vout). Then,
being continuous just means, as always, to be continuous with respect to the
topologies of these two spaces.

2. The second remark is that this apparent di�erence in the requirement of conti-
nuity for steerable kernels and representation operators is actually non-existent.
This is explained by the following Proposition

Proposition 3.1.5. Let K : X → HomK(Vin, Vout) be a steerable kernel. Then K is
continuous.

Proof. For brevity, denote V := HomK(Vin, Vout) and ρ := ρHom. Let x∗ ∈ X be
any point and Gx∗ the stabilizer corresponding to the action of G on X . Remember
the homeomorphism ϕ : G/H → X , [g] 7→ gx∗ from Lemma 2.1.21. Since this is a
homeomorphism, the kernel K is continuous if and only if the composition K ◦ ϕ is
continuous, since then K = (K ◦ ϕ) ◦ ϕ−1 is a composition of continuous functions.
Thus, we evaluate K ◦ ϕ:

(K ◦ ϕ)([g]) = K(ϕ([g])) = K(gx∗) = ρ(g)(K(x∗)),

where in the last step we have used the equivariance of K . Thus, if we set v∗ :=
K(x∗) ∈ V , then we obtain the simple relation (K ◦ ϕ)([g]) = ρ(g)(v∗). This is by
de�nition just the unique map on the quotient,G/H → V , coming from ρv

∗
: G→ V ,

g 7→ ρ(g)(v∗). This last map is continuous by de�nition of a linear representation. The
universal property of quotients Proposition A.1.12 then shows thatK◦ϕ is continuous
as well, and so we are done. All of this is visualized in the following commutative
diagram, where q : G→ G/H , g 7→ [g] is the canonical projection:

G

G/H X V

q
(·)·x∗ ρv

∗

ϕ
∼

K◦ϕ

K
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3. The Correspondence between Steerable Kernels and Kernel Operators

Thus, the only di�erence between steerable kernels and representation operators is
indeed the linearity. We now look at special representation operators that play the
main role in this work:

De�nition 3.1.6 (Kernel Operator). Let ρin : G → AutK(Vin) and ρout : G →
AutK(Vout) be �nite-dimensional G-representations. Let λ : G → U(L2

K(X)) be
the standard unitary representation on the space of square-integrable functions of a
homogeneous space X , given, as in Section 2.1.3, by

[λ(g)(ϕ)] (g′) = ϕ(g−1g′).

A kernel operator is a representation operator K : L2
K(X) → HomK(Vin, Vout). We

denote the space of these by

HomG,K(L
2
K(X),HomK(Vin, Vout))

=
{
K : L2

K(X)→ HomK(Vin, Vout) | K is an intertwiner
}
.

Notably, kernel operators are K-linear in their input.

3.1.4. Formulation of the Correspondence between Steerable
Kernels and Kernel Operators

The following Theorem lies at the heart of our investigations and establishes that
steerable kernels can be considered as kernel operators. More precisely, we will give
an explicit isomorphism between the space of steerable kernels and the space of kernel
operators.
We shortly explain why the theorem is useful. First of all, using a Wigner-Eckart
theorem for kernel operators that we prove in Theorem 4.1.13, one can explicitly de-
scribe a basis B of the space of kernel operators HomG,K(L

2
K(X),HomK(Vin, Vout)).

Then, since we have an isomorphism of vector spaces to the space of steerable ker-
nels, one can “carry over” this basis to a basis for the space of steerable kernels, namely
HomG(X,HomK(Vin, Vout)). This basis will then have a convenient explicit form that
we establish in Theorem 4.1.15 and is exactly what we need in order to parameterize
an equivariant neural network layer. We now come to a precise formulation of the
theorem:

Theorem 3.1.7 (Kernel-Operator-Correspondence). Let ρin : G → AutK(Vin) and
ρout : G → AutK(Vout) be �nite-dimensional G-representations and X be a homoge-
neous space of G. Then there is an isomorphism

HomG(X,HomK(Vin, Vout)) HomG,K(L
2
K(X),HomK(Vin, Vout))

(̂·)

(·)|X
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between the space of steerable kernels on the left and the space of kernel operators on
the right. For a steerable kernel K : X → HomK(Vin, Vout) and a kernel operator K :
L2
K(X)→ HomK(Vin, Vout), these inverse maps are given by K̂(f) :=

∫
X
f(x)K(x)dx

and K|X(x) := K(δx). Here, δx is the Dirac delta function of x ∈ X .

This theorem requires some explanation. First of all, K̂ is supposed to be a kernel op-
erator, i.e. a map L2

K(X)→ HomK(Vin, Vout). Thus, K̂(f) should be a linear function
Vin → Vout. The formal expression of it can indeed be considered as such:

K̂(f) =

∫
X

f(x)K(x)dx : vin 7→
∫
X

f(x) [K(x)] (vin)dx ∈ Vout. (3.3)

Due to the continuity of K proven in Proposition 3.1.54 and the integrability of f , the
function X → Vout, x 7→ f(x) [K(x)] (vin) is also integrable, meaning the expression
in Equation 3.3 can be evaluated. This explains the meaning of the map (̂·) in Theorem
3.1.7.
For the map (·)|X in the other direction, we need to shortly explain what we mean by
the Dirac delta function. A formal description will be given in Section 3.2.3, whereas
here we focus on the intuitions. Such a “function” δx : X → K at a point x ∈ X can be
imagined as a function taking value in�nity at x and zero elsewhere. It is characterized
by the property that

∫
X
δx(x

′)f(x′)dx′ = f(x) for any function f ∈ L2
K(X). We think

of δx as being a function inL2
K(X), even though technically, it is not in this space. This

is since∞ /∈ K.
Now, K|X(x) = K(δx) is de�ned as the value that K takes at the Dirac delta function
δx. However, this is, at �rst sight, not well-de�ned since δx /∈ L2

K(X). Formally, we
can approximate the Dirac delta by scaled indicator functions δU with integral 1 on
subsets U of X around x that get increasingly smaller. Then we can de�ne K|X(x) as
the limit of K(δU) as U tends to x.
Now that we have understood the formulation of the theorem, we might wonder, why
should such a theorem be true? A �rst intuition comes from an analogy with linear
algebra: Namely, assume B is a basis of a K-vector space V and W any other vector
space. Then linear maps f̂ : V → W are in one-to-one correspondence with (not as-
sumed to be linear) functions f : B → W , and this isomorphism is given by restriction
and linear extension:

Hom(B,W ) HomK(V,W ).

(̂·)

(·)|B

Thus, we can think of the homogeneous space X as a “smooth basis” of the space of
square-integrable functions. Sums are then replaced by integrals.
For the actual proof, one direction seems pretty clear from the properties of the Dirac
delta:

K̂
∣∣
X
(x) = K̂(δx) =

∫
X

δx(x
′)K(x′)dx′ = K(x).

4This means that all matrix elements of K(x) for chosen bases of Vin and Vout are continuous.

47



3. The Correspondence between Steerable Kernels and Kernel Operators

But the other direction is less obvious: it seems like the space of kernel operators
is considerably larger than the space of steerable kernels, since kernel operators are
de�ned on a larger space. Therefore it is hard to believe that the construction is also
inverse in the other direction. However, it pays o� to ponder a bit more over what
the Dirac delta construction does: Basically, we “embed” X into L2

K(X) by means of
the Dirac delta functions, i.e. x 7→ δx and, as such, view X as a subset of L2

K(X)
(albeit a subset that is only in approximation in that space). Steerable kernels are then
“partial” kernel operators in the sense that they are only de�ned on this subset X ⊆
L2
K(X). What then needs to be understood is why there is only a unique extension

of each steerable kernel K to a kernel operator K on the whole of L2
K(X): if this

is understood, then the space of kernel operators cannot be larger than the space of
steerable kernels. And indeed, if there is an extension of K to K on L2

K(X), it has
to be unique: each f ∈ L2

K(X) can be approximated by �nite linear combinations of
scaled indicator functions. Then by linearity of the kernel operatorK, we can evaluate
K(f) by knowingK(δU) for scaled indicator functions δU on small measurable sets U .
And these approximate K(x) = K(δx) for x ∈ U arbitrarily well by construction.
This determines the behavior of K. The details of all of this can be found in the next
section.

3.2. A Formal Proof of the Correspondence between
Steerable Kernels and Kernel Operators

Here, we give a step-by-step proof of Theorem 3.1.7. The details of this investigation
will not be needed later, and so a reader who is mainly interested in the applications
to steerable CNNs can safely skip reading this section and go on reading Chapter 4.

3.2.1. A Reduction to Unitary Irreducible Representations

In this section, we make the proof more manageable by reducing HomK(Vin, Vout)
to an irreducible representation. First, remember that Proposition 2.1.20 shows that
there is a scalar product on HomK(Vin, Vout) such that it’s Hom-representation be-
comes unitary. Since all norms on �nite-dimensional spaces are equivalent, as is well
known, this will not change the topology. Then, we can decompose HomK(Vin, Vout)
into an orthogonal direct sum of irreducible unitary representations by Proposition
2.2.15. Let HomK(Vin, Vout) ∼=

⊕n
i=1 Vi be such a decomposition. We get canonical5

isomorphisms

HomG(X,HomK(Vin, Vout)) ∼=
n⊕
i=1

HomG(X, Vi)

5“Canonical” once the decompositions into irreducible representations is already chosen.
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and

HomG,K(L
2
K(X),HomK(Vin, Vout)) ∼=

n⊕
i=1

HomG,K(L
2
K(X), Vi).

Thus, we can show Theorem 3.1.7 by showing it for irreducible unitary representations
instead of HomK(Vin, Vout). Overall, we have reduced our Theorem to the following,
simpler statement:

Theorem 3.2.1. Let ρ : G → U(V ) be an irreducible unitary representation and X a
homogeneous space of G. Then there is an isomorphism

HomG(X, V ) HomG,K(L
2
K(X), V )

(̂·)

(·)|X

which is given as follows: for K ∈ HomG(X, V ) we set K̂(f) =
∫
X
f(x)K(x)dx and

for K ∈ HomG,K(L
2
K(X), V ) we set K|X(x) = K(δx), with δx being the Dirac delta

function at point x.

From now on, we assume that X and ρ : G → U(V ) is �xed as in the formulation of
Theorem 3.2.1.

3.2.2. Well-Definedness of (̂·)

Lemma 3.2.2. The function (̂·) : HomG(X, V )→ HomG,K(L
2
K(X), V ) is well-de�ned,

i.e.: For an equivariant function K : X → V , the function K̂ : L2
K(X) → V is linear,

equivariant and continuous.

Proof. Linearity of K̂ is clear. Equivariance can be proven using the equivariance of
K and the left invariance of the Haar measure on the homogeneous space X :

K̂(λ(g)f) =

∫
X

(λ(g)f)(x)K(x)dx

=

∫
X

f(g−1 · x)K(x)dx

=

∫
X

f(x)K(g · x)dx

=

∫
X

f(x) [ρ(g) (K(x))] dx

= ρ(g)

[∫
X

f(x)K(x)dx

]
= ρ(g)

[
K̂(f)

]
.
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3. The Correspondence between Steerable Kernels and Kernel Operators

The action by ρ(g) could be put out of the integral since ρ(g) it is linear and continuous,
and since integrals can be approximated by �nite sums.
Now about continuity: By Proposition A.1.18, we only need to show continuity in 0.
Thus, let (fk)k be a sequence of functions fk ∈ L2

K(X) with limk→∞ ‖fk‖L2 = 0. Then
we obtain

‖K̂(fk)‖V =

∥∥∥∥∫
X

fk(x)K(x)dx

∥∥∥∥
V

≤
∫
X

|fk(x)| · ‖K(x)‖V dx

≤ max
x′
‖K(x′)‖V ·

∫
X

|fk(x)|dx,

where the continuity ofK proven in Proposition 3.1.5 was used6. For the right expres-
sion, using the Cauchy-Schwarz inequality Proposition A.2.3 we obtain∫

X

|fk(x)|dx =

∫
X

|fk(x)| · 1dx

= |〈|fk| | 1〉|
≤ ‖fk‖L2 · ‖1‖L2

= ‖fk‖L2 .

So, overall, if limk→∞ ‖fk‖L2 = 0, then limk→∞ ‖K̂(fk)‖V = 0 as well, which proves
continuity.

3.2.3. Construction and Well-Definedness of (·)|X
In order to show the well-de�nedness of the function K 7→ K|X , we �rst need to
clarify the de�nition of this function. In the limiting process of its construction, we
unfortunately cannot rely on the usual de�nitions using sequences indexed by natural
numbers since there may be “too many open neighborhoods of points”. Thus we �rst
need to discuss the more general directed sets and sequences indexed by them, i.e.
so-called nets [23].

De�nition 3.2.3 (Partially Ordered Set, Directed Set). Let I be any index set and ≤ a
relation on it. I = (I,≤) is a partially ordered set if:

1. ≤ is re�exive, i.e. i ≤ i for all i ∈ I .

2. ≤ is antisymmetric, that is: i ≤ j and j ≤ i together imply i = j.

3. ≤ is transitive, that is: i ≤ j and j ≤ k together imply i ≤ k.
6since ‖K‖ is continuous on X , which is compact by Proposition A.1.8 as an image of the compact

group G, it has a maximum by Corollary A.1.25.
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A partially ordered set I is called directed if for all i, j ∈ I there exists k ∈ I such that
i ≤ k and j ≤ k.

Example 3.2.4. Clearly, the natural numbers together with the standard order rela-
tion form a directed set.
An important example for our purposes is the following: let Z be any topological
space (for example our homogeneous space X) and x ∈ Z be any point. Furthermore,
de�ne Ux as the set of open neighborhoods of x, i.e. open sets U ⊆ Z such that x ∈ U .
On this set, we de�ne U ≤ V if U ⊇ V , i.e. by reversed inclusion. Then (Ux,≤) is a
directed set:

1. Re�exivity is clear since V ⊇ V for all V .

2. Antisymmetry is clear since U ⊇ V and V ⊇ U together clearly imply U = V .

3. Transitivity is clear since U ⊇ V and V ⊇ W together clearly imply U ⊇ W .

4. For directedness, let U, V ∈ Ux. De�ne W = U ∩ V . Then W ∈ Ux and clearly
U ⊇ W and V ⊇ W , which is what was to show.

Note that Ux is usually not totally ordered, i.e. there are usually U, V ∈ Ux such that
neither U ⊇ V nor V ⊇ U .

De�nition 3.2.5 (Net). Let Z be any topological space and I a directed set. Then a
net in Z is a function x : I → Z . We write a net as (xi)i∈I , in analogy to sequences.

De�nition 3.2.6 (Convergence of Nets). Let (xi)i∈I be a net in a topological space Z .
Let x ∈ Z . We say that (xi)i∈I converges to x, written limi∈I xi = x, if the following
holds: For all open neighborhoods U of x there is an i0 ∈ I such that for all i ≥ i0 we
have xi ∈ U .

De�nition 3.2.7 (Approximated Dirac Delta). For ∅ 6= U ⊆ X open, we de�ne the
approximated Dirac delta by

δU(x) =
1

µ(U)
· 1U =

{
1

µ(U)
, x ∈ U

0, else.

A priori, it is unclear that open sets have positive measure, which is needed for the
well-de�nedness of this construction. Thus, we need the following lemma:

Lemma 3.2.8. Let ∅ 6= U ⊆ X be an open set. Then µ(U) > 0.

Proof. Consider the family of open sets (gU)g∈G. That all of these sets are necessarily
open follows since the actionG×X → X is continuous, and thus by the de�nition of
a group action, each g ∈ G induces a homeomorphism X → X, x 7→ gx. Now, since
the action is transitive, (gU)g∈G is an open cover of X , and since X is compact, see
De�nition A.1.7, it has an open subcover (giU)ni=1 with gi ∈ G. Note that µ(giU) =
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µ(U) for all i since the measure µ on X is by de�nition left invariant under the action
of G. Overall, we obtain

1 = µ(X) = µ

( n⋃
i=1

giU

)
≤

n∑
i=1

µ(giU) =
n∑
i=1

µ(U) = n · µ(U)

and thus µ(U) ≥ 1
n
> 0.

Now we have established all concepts needed for de�ning the mapK|X . What we call
“intertwiners” in what follows are basically kernel operators, only that the space V
does not have the structure of a Hom-space.

De�nition 3.2.9 (Restriction of intertwiners). LetK : L2
K(X)→ V be an intertwiner.

Let x ∈ X . Let Ux be the net of open neighborhoods of x from Example 3.2.4. Then
we de�ne

K|X(x) := K(δx) := lim
U∈Ux

K(δU),

where δU is the approximated Dirac delta from De�nition 3.2.7 and where the limit is
a limit of nets as in De�nition 3.2.6.

While it is clear that this limit is unique if it exists [23], it is somewhat unclear why
it exists in the �rst place. For this, we need to better understand the properties of the
(approximated) Dirac delta. The most important one is the following, which we hinted
at already in the intuitions we gave before this section: basically, Dirac deltas help for
evaluating continuous functions at speci�c points:

Lemma3.2.10. For eachx ∈ X andY : X → K continuous we have limU∈Ux 〈δU |Y 〉 =
Y (x).

Proof. We have

∣∣ 〈δU |Y 〉 − Y (x)
∣∣ = ∣∣∣∣∫

X

δU(x
′)Y (x′)dx′ − µ(U) · 1

µ(U)
Y (x)

∣∣∣∣
=

∣∣∣∣∫
U

1

µ(U)
Y (x′)dx′ −

∫
U

1

µ(U)
Y (x)dx′

∣∣∣∣
=

∣∣∣∣∫
U

1

µ(U)
(Y (x′)− Y (x))dx′

∣∣∣∣
≤
∫
U

1

µ(U)
|Y (x′)− Y (x)| dx′.

Let ε > 0. Since Y is continuous in x, there is Uε ∈ Ux such that Y (x′) ∈ Bε(Y (x)) for
all x′ ∈ Uε or, equivalently, |Y (x′) − Y (x)| < ε. Thus, for all Uε ⊇ U , i.e. all Uε ≤ U
in Ux we obtain ∣∣ 〈δU |Y 〉 − Y (x)

∣∣ ≤ ∫
U

1

µ(U)
|Y (x′)− Y (x)|dx′
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≤
∫
U

1

µ(U)
εdx′

= ε · µ(U) · 1

µ(U)

= ε

and consequently limU∈Ux 〈δU |Y 〉 = Y (x).

Before we can show the well-de�nedness ofK|X , we �rst want to get a better descrip-
tion ofK. For that, recall from the Peter-Weyl Theorem thatL2

K(X) =
⊕̂

l∈Ĝ
⊕ml

i=1 Vli.
With this at our disposal, we can formulate the following Lemma on the form of in-
tertwiners on L2

K(X):

Lemma 3.2.11. Let K : L2
K(X)→ V be an intertwiner. Let l ∈ Ĝ be the unique index

such that V ∼= Vli for all i = 1, . . . ,ml. Let Y n
li , n = 1, . . . , [l] be an orthonormal basis

of Vli where [l] = dim(Vl). Then

K(f) =
∑ml

i=1

∑[l]

n=1
〈Y n

li |f〉K(Y n
li )

for all f ∈ L2
K(X).

Proof. We can write f ∈ L2
K(X) according to the discussion after De�nition A.2.9 as

f =
∑

l′∈Ĝ

∑ml′

i=1

∑[l′]

n=1
〈Y n

l′i|f〉Y n
l′i.

Note that K|Vl′i : Vl′i → V is an intertwiner as well, and so by Schur’s Lemma 2.2.6
it is necessarily zero unless l′ = l is the unique index such that Vli ∼= V . Due to its
continuity and linearity, K commutes with in�nite sums and we obtain

K(f) =
∑

l′∈Ĝ

∑ml′

i=1

∑[l′]

n=1
〈Y n

l′i|f〉K (Y n
l′i)

=
∑

l′∈Ĝ

∑ml′

i=1

∑[l′]

n=1
〈Y n

l′i|f〉K|Vl′i (Y
n
l′i)

=
∑ml

i=1

∑[l]

n=1
〈Y n

li |f〉K(Y n
li ).

Corollary 3.2.12. We have K|X(x) =
∑ml

i=1

∑[l]
n=1 Y

n
li (x)K(Y n

li ). In particular, the
de�ning limit exists.

Proof. Since theY n
li are by the proof of the Peter-Weyl Theorem in the �nite-dimensional

space El spanned by matrix coe�cients of the irreducible representation ρl : G →
U(Vl) and since these matrix coe�cients are continuous by Remark 2.2.2, the Y n

li are
as �nite linear combinations of them also continuous functions. Thus, from Lemma
3.2.10 and 3.2.11 together we obtain:

K|X(x) = lim
U∈Ux

K (δU)
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= lim
U∈Ux

∑ml

i=1

∑[l]

n=1
〈Y n

li |δU〉K(Y n
li )

=
∑ml

i=1

∑[l]

n=1

[
lim
U∈Ux

〈Y n
li |δU〉

]
K(Y n

li )

=
∑ml

i=1

∑[l]

n=1
Y n
li (x)K(Y

n
li ).

The complex conjugation came into play since the order in the scalar product is swapped
compared to Lemma 3.2.10.

Thus, since we now know that K|X as a function makes sense, we can �nally prove
the well-de�nedness of K 7→ K|X ,

Lemma 3.2.13. The function (·)|X : HomG,K(L
2
K(X), V ) → HomG(X, V ) is well-

de�ned, that is: for a linear, equivariant and continuous function K : L2
K(X) → V , the

restriction K|X : X → V is equivariant.

Proof. We have

K|X(g · x) = lim
U∈Ugx

K (δU)

= lim
U∈Ux

K (δgU)

= lim
U∈Ux

K (λ(g)δU)

= lim
U∈Ux

ρ(g) [K (δU)]

= ρ(g)
[
lim
U∈Ux

K (δU)
]

= ρ(g) [K|X(x)] ,

where the steps are justi�ed as follows: The �rst step is just the de�nition ofK|X . The
second step uses that the open neighborhood of gx are precisely the g-translated open
neighborhoods of x since g : X → X is a homeomorphism. The third step is easy to
check. The fourth step uses the equivariance of K. The �fth step uses the continuity
of ρ(g), which follows since ρ(g) is a unitary transformation. The last step is again
the de�nition of K|X .

3.2.4. (̂·) and (·)|X Are Inverse to Each Other
With all this preparation, we can �nish the proof of Theorem 3.2.1 and consequently
of Theorem 3.1.7:

Proof of Theorem 3.2.1. After all the preparation, we only need to still show that the
maps (̂·) and (·)|X are inverse to each other. For K̂

∣∣
X
= K , i.e. the injectivity of the

function K 7→ K̂ and surjectivity of the function K 7→ K|X , we compute:

K̂
∣∣
X
(x) = lim

U∈Ux
K̂ (δU)
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= lim
U∈Ux

∫
X

δU(x
′)K(x′)dx′

= K(x).

The last step follows from Lemma 3.2.10 by identifying V = Vl with K[l] and viewing
K as consisting of continuous component functions Kn : X → K, n ∈ {1, . . . , [l]}.
The continuity of K was shown in Proposition 3.1.5.
For showing K̂|X = K we do a computation using the description of K from Lemma
3.2.11 and the description of K|X from Corollary 3.2.12:

K̂|X(f) =
∫
X

f(x)K|X(x)dx

=

∫
X

f(x)
(∑ml

i=1

∑[l]

n=1
Y n
li (x)K(Y

n
li )
)
dx

=
∑ml

i=1

∑[l]

n=1

(∫
X

f(x)Y n
li (x)dx

)
K(Y n

li )

=
∑ml

i=1

∑[l]

n=1
〈Y n

li |f〉K(Y n
li )

= K(f).

This �nally �nishes the proof.
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4. A Wigner-Eckart Theorem for
Steerable Kernels of General
Compact Groups

In Chapter 3 we have seen the most important theoretical insight of this work: steer-
able kernels on a homogeneous space X correspond one-to-one to kernel operators
(certain representation operators) on the space of square-integrable functions L2

K(X).
In this chapter, we will develop the most important consequence of this correspon-
dence: a Wigner-Eckart Theorem for steerable kernels and consequently a description
of a basis for steerable kernels. This works for both �elds R and C, for an arbitrary
compact groupG, an arbitrary homogeneous spaceX and arbitrary �nite-dimensional
input- and output �elds.
In Section 4.1 we will work towards formulating the most important theorems. Since
these will involve tensor products, we will start with de�ning and studying tensor
products of pre-Hilbert spaces and (unitary) representations. Afterward, we will de-
�ne the Clebsch-Gordan coe�cients, which relate a tensor product of irreducible rep-
resentations to the irreducible subrepresentations of this tensor product. This will lead
to a formulation of the original Wigner-Eckart Theorem similar as it appears in quan-
tum mechanics, including a proof. The original Wigner-Eckart Theorem is a statement
about representation operators on irreducible representations. However, we consider
kernel operators on L2

K(X) which is not irreducible. Also, di�erent from the orig-
inal Theorem, we also consider representations over the real numbers, which leads
to a replacement of reduced matrix elements by endomorphisms. Therefore we then
formulate a generalization of the original theorem. Then, using the correspondence
between kernel operators and steerable kernels from Theorem 3.1.7, we can transform
this into a Wigner-Eckart Theorem for steerable kernels and ultimately a statement
about a basis of the space of steerable kernels. We conclude with some remarks about
how to use the basis kernels in practice.
Afterward, in Section 4.2, we give the remaining proof of the Wigner-Eckart Theorem
for kernel operators, which we omit in the section before. First, we reduce the state-
ment to the dense subspace ofL2

K(X) which is a direct sum of all irreducible subrepre-
sentations. We then describe a correspondence between representation operators and
intertwiners on a certain tensor product, the so-called hom-tensor adjunction. Finally,
we �nish with the full proof of the Wigner-Eckart Theorem.
As always, let K be either of the two �elds R and C and G be a compact topological
group. X is any homogeneous space of G.
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4.1. A Wigner-Eckart Theorem for Steerable Kernels
and their Kernel Bases

4.1.1. Tensor Products of pre-Hilbert Spaces and Unitary
Representations

In order to state the Wigner-Eckart Theorem, we need the notion of representations
on tensor products. This is de�ned similarly to Hom-representations, see De�nition
3.1.1. For this, we �rst need to discuss the notion of a tensor product of vector spaces:

De�nition 4.1.1 (Tensor Product). Let V and V ′ be two vector spaces over K. Then
V ⊗ V ′, the tensor product of V and V ′, is a vector space over K with the following
properties:

1. There is a bilinear function ⊗ : V × V ′ → V ⊗ V ′, (v, v′) 7→ v ⊗ v′. V ⊗ V ′ is
generated by elements of the form v ⊗ v′.

2. It has the following universal property: for any bilinear function β : V ×V ′ → P
into a vector space P , there is a unique linear function β : V ⊗ V ′ → P given
on elements of the form v ⊗ v′ by β(v ⊗ v′) = β(v, v′). In other words, the
following diagram commutes:

V × V ′ P

V ⊗ V ′

β

⊗
β

3. IfV andV ′ are �nite-dimensional with bases{v1, . . . , vn} ⊆ V and {v′1, . . . , v′m} ⊆
V ′, then {vi⊗ v′j}i,j ⊆ V ⊗ V ′ is a basis of V ⊗ V ′. In particular, the dimension
of V ⊗ V ′ is n ·m.

Property 3 follows from 1 and 2 and would therefore not necessarily be needed in
the de�nition. The explicit construction of tensor products shall not matter for our
purposes since the properties above characterize it up to isomorphism. The second
property stated in the de�nition is of large importance since it tells us how we can
de�ne linear functions on V ⊗V ′: if we have a guess for such a function ϕ : V ⊗V ′ →
P (of which we don’t yet know whether its “assignment rule” is well-de�ned), then we
just need to test whether the function ϕ̃ : V × V ′ → P given by ϕ̃(v, v′) := ϕ(v⊗ v′)
is bilinear. If it is, then ϕ is a well-de�ned linear function. We will use this soon in the
following context: Assume f : V → V and g : V ′ → V ′ are linear functions. Then we
would like to de�ne a function f⊗g : V⊗V ′ → V⊗V ′ by (f⊗g)(v⊗v′) = f(v)⊗g(v′).
For this to work, we need to test whether the assignment (v, v′) 7→ f(v) ⊗ g(v′) is
a bilinear function V × V ′ → V ⊗ V ′. Clearly, it is, and so f ⊗ g is a well-de�ned
linear function! We use this in De�nition 4.1.3 in order to de�ne the tensor product of
representations.
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Since we actually deal with Hilbert spaces most of the time, we would like to build ten-
sor products of Hilbert spaces. However, their de�nition is not completely straightfor-
ward since one cannot just take the tensor product of the underlying vector spaces but
needs to additionally build the completion of the resulting space [25]. Since this com-
plicates the considerations related to a correspondence we later formulate in Propo-
sition 4.2.4, we go a slightly di�erent route. Instead of describing the tensor product
of Hilbert spaces, we describe the tensor product of pre-Hilbert spaces, which does
not require a completion step. Recall from De�nition A.2 that a pre-Hilbert space is
basically a Hilbert space that is not necessarily complete.

De�nition 4.1.2 (Tensor product of pre-Hilbert spaces). Let V, V ′ be two pre-Hilbert
spaces with scalar products 〈·|·〉 and 〈·|·〉′. Then the tensor product of vector spaces
V ⊗ V ′ can be made into a pre-Hilbert space using the scalar product which is given
on generators by

〈v ⊗ v′|w ⊗ w′〉⊗ := 〈v|w〉 · 〈v′|w′〉′ .

This is then anti-linearly extended in the �rst (i.e. “Bra”), and linearly extended in the
second (i.e. “Ket”) component.

One can show that this makes V ⊗V ′ a pre-Hilbert space. For simplicity, we will from
now on not notationally distinguish the di�erent scalar products involved. With this
preparation, we can come to the notion of tensor product representations:

De�nition 4.1.3 (Tensor Product Representation). Let ρ : G → AutK(V ) and ρ′ :
G→ AutK(V

′) be two linear representations, where V and V ′ are pre-Hilbert spaces.
Then on the tensor product V ⊗ V ′ of pre-Hilbert spaces, we can de�ne the tensor
product representation ρ⊗ ρ′ by

ρ⊗ ρ′ : G→ AutK(V ⊗ V ′), g 7→ ρ(g)⊗ ρ′(g),

where ρ(g)⊗ ρ′(g) : V ⊗ V ′ → V ⊗ V ′ is given on generators by

(ρ(g)⊗ ρ′(g)) (v ⊗ v′) := ρ(g)(v)⊗ ρ′(g)(v′).

Lemma 4.1.4. The map ρ ⊗ ρ′ : G → AutK(V ⊗ V ′) de�ned above is a linear repre-
sentation.

Proof. Clearly, each (ρ ⊗ ρ′)(g) is linear and we have (ρ ⊗ ρ′)(gg′) = (ρ ⊗ ρ′)(g) ◦
(ρ⊗ ρ′)(g′). Thus, for showing that it is a linear representation, we need to show it is
continuous. Assume we already knew continuity of all maps (ρ⊗ρ′)v⊗v′ : G→ V ⊗V ′,
g 7→

[
(ρ ⊗ ρ′)(g)

]
(v ⊗ v′). Then for linear combinations ξ =

∑n
i=1 λi (vi ⊗ v′i) we

obtain using the linearity of (ρ⊗ ρ′)(g):

(ρ⊗ ρ′)ξ(g) =
[
(ρ⊗ ρ′)(g)

]
(ξ)

=
[
(ρ⊗ ρ′)(g)

] (∑n

i=1
λi (vi ⊗ v′i)

)
=
∑n

i=1
λi
[
(ρ⊗ ρ′)(g)

]
(vi ⊗ v′i)
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=
(∑n

i=1
λi(ρ⊗ ρ′)vi⊗v

′
i

)
(g).

Now, since scalar multiplication and addition in topological vector spaces is continu-
ous, and since pre-Hilbert spaces are special topological vector spaces, the continuity
of (ρ⊗ ρ′)ξ follows from that of all (ρ⊗ ρ′)v⊗v′ .
What’s left is proving the continuity of functions of the form (ρ ⊗ ρ′)v⊗v′ . For nota-
tional simplicity, write f = ρv : G→ V and f ′ : ρ′v′ , which are both continuous since
ρ and ρ′ are linear representations. We want to show that also f ⊗ f ′ : G → V ⊗ V ′
is continuous. We can test continuity in each point g0 ∈ G separately by De�nition
A.1.6. For each g ∈ Gwe then obtain, withRe being the real part of a complex number:

‖(f ⊗ f ′)(g)− (f ⊗ f ′)(g0)‖2

=
∥∥ [f(g)⊗ f ′(g)− f(g)⊗ f ′(g0)] + [f(g)⊗ f ′(g0)− f(g0)⊗ f ′(g0)]

∥∥2
=
∥∥f(g)⊗ [f ′(g)− f ′(g0)] + [f(g)− f(g0)]⊗ f ′(g0)

∥∥2
=
∥∥f(g)⊗ [f ′(g)− f ′(g0)]

∥∥2 + ∥∥ [f(g)− f(g0)]⊗ f ′(g0)∥∥2
+ 2Re

〈
f(g)⊗ [f ′(g)− f ′(g0)]

∣∣∣ [f(g)− f(g0)]⊗ f ′(g0)〉
= ‖f(g)‖2 · ‖f ′(g)− f ′(g0)‖2 + ‖f(g)− f(g0)‖2 · ‖f ′(g0)‖2

+ 2Re
(
〈f(g)|f(g)− f(g0)〉 · 〈f ′(g)− f ′(g0)|f ′(g0)〉

)
.

All in all we see the following: If g is su�ciently close to g0, then due to the continuity
of f , f ′, the scalar product, multiplication inK and the real part, ‖(f ⊗ f ′)(g)− (f ⊗
f ′)(g0)‖2 gets arbitrarily close to 0. This shows the continuity of f ⊗ f ′ and we are
done.

Lemma 4.1.5. Let ρ : G → U(V ) and ρ′ : G → U(V ′) be unitary representations
on pre-Hilbert spaces. Then also ρ ⊗ ρ′ : G → U(V ⊗ V ′) is a well-de�ned unitary
representation.

Proof. According to Lemma 4.1.4 we only need to check whether all ρ(g) ⊗ ρ′(g) are
unitary transformations. This follows immediately from the unitarity of ρ(g) and
ρ′(g).

4.1.2. The Clebsch-Gordan Coe�icients and the Original
Wigner-Eckart Theorem

In this section, we describe the Clebsch-Gordan coe�cients and the original Wigner-
Eckart Theorem. Except for the proof, we roughly follow Jeevanjee [10]. For the proof,
we follow the more general treatment in Agrawala [26]1.

1It is more general in that it considers arbitrary groups and the situation that the considered irreducible
representation appears several times in a tensor product representation instead of just once.
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For our aims, let ρj : G → U(Vj) and ρl : G → U(Vl) be representatives of iso-
morphism classes of irreducible unitary representations2. Then consider their tensor
product representation

ρj ⊗ ρl : G→ U(Vj ⊗ Vl)

which is again a unitary representation according to Lemma 4.1.5. If Vj and Vl are
of dimension [j] and [l], respectively, then Vj ⊗ Vl is of dimension [j] · [l]. Since it
is a �nite-dimensional unitary representation, it is itself an orthogonal direct sum of
�nitely many irreducible unitary representations by Proposition 2.2.15:

Vj ⊗ Vl ∼=
⊕
J∈Ĝ

[J(jl)]⊕
s=1

VJ .

Here Ĝ is, as before, the set of isomorphism classes of irreducible unitary representa-
tions and [J(jl)] is the number of times that ρJ : G → U(VJ) appears in the direct
sum decomposition of Vj⊗Vl. Note that for most J we have [J(jl)] = 0, and for some
J we may have [J(jl)] > 1, see Section 6.2, where it turns out that ρ0 is contained
twice in ρm ⊗ ρm.
Now, choose — once and for all — orthonormal bases of all involved irreps, which
exists according to Proposition A.2.10:{

Y m
j | m = 1, . . . , [j]

}
⊆ Vj,{

Y n
l | n = 1, . . . , [l]

}
⊆ Vl,{

Y M
J |M = 1, . . . , [J ]

}
⊆ VJ .

This notation is supposed to remind about spherical harmonics since they form a basis
for irreducible representations of the group SO(3). But as mentioned in the footnote,
we do not consider these basis elements to be functions here.
Furthermore, let ls : VJ → Vj ⊗ Vl be the linear, equivariant and isometric (i.e. scalar
product preserving) embeddings that correspond to the direct sum decomposition of
Vj⊗Vl into irreps, where s ranges in {1, . . . , [J(jl)]}. With this in mind, we can de�ne
the Clebsch-Gordan coe�cients:

De�nition 4.1.6 (Clebsch-Gordan Coe�cients). The Clebsch-Gordan Coe�cients are
given by

〈s, JM |jmln〉 :=
〈
ls(Y

M
J )
∣∣Y m
j ⊗ Y n

l

〉
.

Note that in the literature, people usually only consider Clebsch-Gordan coe�cients
of the speci�c groups SO(3), SU(2), SU(3) or similar groups appearing in physics.
Also note that in the physics context, there is only one linear, equivariant, isometric
embedding ls, which follows directly from Schur’s Lemma 4.1.8. Therefore, it is sen-
sible that the embedding is usually not part of the notation of these coe�cients. In

2Those are a priori not assumed to be embedded in a space of square-integrable functions. For such
embedded representations, we write Vji instead.
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our case, however, when considering real representations, there can be several such
embeddings ls. This happens if the endomorphism space of VJ is nontrivial. An exam-
ple is given by the two-dimensional irreducible representations of SO(2) over the real
numbers which we discuss in Section 6.2. Since, however, we do not want to depart
too much from the notation usually considered in physics, we also omit the embed-
ding from the notation. The index s however needs to be present in order to index the
possibly di�erent appearances of VJ in Vj ⊗ Vl.
With this preparation, we can explain the Wigner-Eckart Theorem the way it is usually
considered in physics, as a prelude for the generalization that we consider in the next
section.
In this (and only this!) section, we assume that our �eld is C, since this is the case
considered in physics. The Wigner-Eckart Theorem aims to obtain a description for
all possible representation operators K : Vj → HomC(Vl, VJ). As discussed in the
introduction, this is, for example, useful for describing state transitions in the electrons
of hydrogen atoms. To motivate the generalization in the next section, we shortly
explain the derivation: we can consider the equivalent function K : Vj ⊗ Vl → VJ
given by K̃(vj⊗ vl) := [K(vj)] (vl) on the tensor product. As one can compute, and as
we will see in more generality in Proposition 4.2.4, K̃ : Vj⊗Vl → VJ is an intertwiner,
where on the left we consider the tensor product representation. We assume, as is the
case for G = SO(3) or G = SU(2) for usual applications in physics, that VJ is exactly
once a direct summand of Vj⊗Vl. Then, since by Schur’s Lemma 2.2.6 there cannot be
nontrivial equivariant linear maps between nonisomorphic irreps, K̃ restricted to each
direct summand of Vj ⊗Vl vanishes, except the one isomorphic to VJ . More precisely,
assume that

Vj ⊗ Vl ∼= VJ ⊕
⊕
l′

Vl′

is a decomposition of Vj ⊗ Vl into copies of irreducible representations, where each
Vl′ is nonisomorphic to VJ . Then the information contained in K̃ is essentially equal
to the information contained in the restriction K̃|VJ : VJ → VJ . Since it is an in-
tertwiner from a representation to itself, it deserves a special name. We state the
following de�nition for arbitrary K ∈ {R,C}, since it will be of crucial importance
in our generalization of the Wigner-Eckart Theorem:

De�nition 4.1.7 (Endomorphism). Let ρ : G→ AutK(V ) be a linear representation.
An intertwiner from V to V is called endomorphism. The vector space of endomor-
phisms is written as

EndG,K(V ) := HomG,K(V, V ).

A version of Schur’s Lemma gives a very simple description for endomorphisms of ir-
reducible representations in the case that the underlying �eld is the complex numbers
C. It makes use of the property of the complex numbers to be algebraically closed:

Lemma 4.1.8 (Schur’s Lemma). Let ρ : G→ AutK(V ) be an irreducible representation.
If the underlying �eld is the complex numbers C, then the set of endomorphisms, i.e.
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intertwiners from V to V , only consists of the complex multiples of the identity:

EndG,C(V ) = {c · idV | c ∈ C} ∼= C.

Proof. See Jeevanjee [10].

This means that K̃|VJ = c · idVJ for some complex number c ∈ C. Now if we let
p : Vj ⊗ Vl → VJ be the projection corresponding to the direct sum decomposition of
Vj ⊗ Vl, then we obtain

K̃ = K̃|VJ ◦ p = (c · idVJ ) ◦ p = c · p.

That is, we have just found out that one complex number, c, is able to completely char-
acterize K̃ and consequentlyK! This is basically already the Wigner-Eckart Theorem.
However, it is useful to �nd a formulation that describes K with respect to bases of
the di�erent irreducible representations. For this, we de�ne matrix elements of repre-
sentation operators. Before we come to the de�nition, we introduce some notation: If
f : V → V ′ is a linear continuous map between Hilbert spaces, we set

〈y|f |x〉 := 〈y|f(x)〉

for each x ∈ V and y ∈ V ′. The symmetry in this notation is supposed to remind
about the fact that f has an adjoint, see De�nition A.2.11, and thus can be applied to
y just as well as to x, but we will not make use of this fact.

De�nition 4.1.9 (Matrix element). Let T , Vl and VJ be unitary representations with
orthonormal bases {Y m

j } ⊆ T (with j possibly also varying), {Y n
l } ⊆ Vl and {Y M

J } ⊆
VJ , respectively. Let K : T → HomK(Vl, VJ) be a representation operator. Then it’s
matrix elements are given by the scalars〈

JM
∣∣Kmj ∣∣ln〉 := 〈Y M

J

∣∣K(Y m
j )
∣∣Y n
l

〉
.

In the same way, if f : Vl → VJ is any linear (not necessarily equivariant) map, then
its matrix elements are given by the scalars

〈JM |f |ln〉 :=
〈
Y M
J

∣∣f ∣∣Y n
l

〉
.

Remark 4.1.10. We shortly explain this term. Usually, in linear algebra, one has to do
with linear functions f : V → V ′ between vector spaces carrying bases {vj} ⊆ V
and {v′i} ⊆ V ′. For each basis element vj ∈ V one can then �nd coe�cients Aij ∈ K
such that

f(vj) =
∑

i
Aijv

′
i.

The Aij are called the matrix elements of f and characterize f completely. Now if the
bases are orthonormal bases as in De�nition A.2.9, then the coe�cients are given by

Aij = 〈v′i|f(vj)〉 = 〈v′i|f |vj〉 .

In a similar way we can understand the matrix elements of a representation operator,
only that the linear function itself depends on a chosen basis vector of Vj . As for linear
functions, the matrix elements of a representation operator completely characterize it.
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One last remark: since in this section, VJ appears only once as a direct summand in
Vj ⊗ Vl, we omit the additional “quantum number” s in the notation for the Clebsch-
Gordan coe�cients. With this preparation, we can formulate and prove the original
version of the Wigner-Eckart Theorem. Remember that there is a unique complex
number c such that K̃ is given by K̃ = c · p for a projection p : Vj ⊗Vl → VJ . We now
denote this by 〈J‖K‖l〉 := c.

Theorem 4.1.11 (Wigner-Eckart Theorem). The matrix elements of the representation
operator K : Vj → HomC(Vl, VJ) are given by〈

JM
∣∣Kmj ∣∣ln〉 = 〈J‖K‖l〉 · 〈JM ∣∣jmln〉,

with the
〈
JM

∣∣jmln〉 being the Clebsch-Gordan coe�cients (which are independent from
the representation operator K).

Proof. Let i : VJ → Vj⊗Vl be the embedding corresponding to the direct sum decom-
position of Vj ⊗ Vl. It is an adjoint of the projection p : Vj ⊗ Vl → VJ according to
the proof of Proposition A.2.15. By what we’ve argued above, there exists some c ∈ C
such that: 〈

JM
∣∣Kmj ∣∣ln〉 = 〈Y M

J

∣∣K(Y m
j )
∣∣Y n
l

〉
=
〈
Y M
J

∣∣K̃(Y m
j ⊗ Y n

l )
〉

=
〈
Y M
J

∣∣c · p(Y m
j ⊗ Y n

l )
〉

= c ·
〈
Y M
J

∣∣p(Y m
j ⊗ Y n

l )
〉

= c ·
〈
i(Y M

J )
∣∣Y m
j ⊗ Y n

l

〉
= 〈J‖K‖l〉 ·

〈
JM

∣∣jmln〉.
As a short explanation: in the �fth step it was used that i and p are adjoint to each other,
and consequently, we move from considering the tensor product in VJ to that one in
Vj ⊗ Vl. In the last step, the de�nition of the Clebsch-Gordan coe�cients was used,
and additionally, the notation 〈J‖K‖l〉 := c that we mentioned before the theorem.
The index s is everywhere missing since VJ appears only once in Vj⊗Vl. This �nishes
the proof.

De�nition 4.1.12 (Reduced Matrix Element). The unique number c = 〈J‖K‖l〉 ∈ C
in this theorem is called the reduced matrix element. To reiterate, it characterizes the
representation operator completely.

4.1.3. The Wigner-Eckart Theorem for Steerable Kernels
Now that we have seen the Wigner-Eckart Theorem in a version similar to how it
usually appears in physics, it is time to state the version which we will need in this
work for applications in deep learning. The treatment is similar to the formulation
in Agrawala [26], which presents a generalization of the Wigner-Eckart Theorem to
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the case that VJ may appear several times as a direct summand in the direct sum
decomposition of the tensor product. However, this paper still only considers the
Wigner-Eckart Theorem for the case of the complex numbers C only. If we allow the
real numbers as well, we cannot be sure that endomorphisms of irreducible represen-
tations are just given by one number. This is a complication we will deal with below
by allowing matrix elements of general endomorphisms. Furthermore, we will deal
with topological considerations that did not play a role in Agrawala [26]. And lastly,
we transport the theorem over into the realm of steerable kernels.
We only consider the case that the input- and output representations are irreducible.
Weiler and Cesa [9] then show how to extend the description of the basis kernels to
basis kernels of general �nite-dimensional input- and output representations. Fur-
thermore, we can assume the input- and output representations to be unitary by
Proposition 2.1.20. And �nally, we can assume them to even be representatives of
the isomorphism classes, since the basis kernels transform predictably under isomor-
phisms. Thus, assume the input-representation to be ρl : G→ U(Vl) and the output-
representation to be ρJ : G → U(VJ). The idea is now that kernel operators K :
L2
K(X) → HomK(Vl, VJ) can be described on each direct summand of the domain

individually, and that on each of these summands, arguments similar to those for the
original Wigner-Eckart Theorem apply.
As a reminder, G is any compact group and X any homogeneous space of G. Fur-
thermore, according to the Peter-Weyl Theorem 2.1.22 the space L2

K(X) has a dense
subset which is a direct sum of irreducible unitary representations:

L2
K(X) =

⊕̂
j∈Ĝ

mj⊕
i=1

Vji.

Each Vji is, as a subrepresentation ofL2
K(X), isomorphic to Vj . Vj is itself not assumed

to be embedded in L2
K(X).

For arbitrary j ∈ Ĝ, �x once and for all orthonormal bases {Y m
ji } ⊆ Vji correspond-

ing to the basis {Y m
j } of Vj3. Furthermore, assume that for all s = 1, . . . , [J(jl)],

pjis : Vji ⊗ Vl → VJ is a projection which is an adjoint of the linear equivariant
isometric embedding ljis : VJ → Vji ⊗ Vl. This is assumed to be aligned with the
embeddings VJ → Vj ⊗ Vl with respect to the isomorphisms Vj ∼= Vji that underlie
the correspondence of basis elements Y m

j ∼ Y m
ji . What this means is that the Clebsch-

Gordan coe�cients with respect to all of these embeddings, for all i, are equal:〈
ljis(Y

M
J )
∣∣Y m
ji ⊗ Y n

l

〉
= 〈s, JM |jmln〉 .

Now we state and prove the Wigner-Eckart Theorem, which gives an explicit descrip-
tion of representation operators K : L2

K(X) → HomK(Vl, VJ) in terms of endomor-
phisms of VJ and then transfers this statement over to a statement about steerable
kernels K : X → HomK(Vl, VJ). Before we state the theorem, we want to shortly

3i is like an additional quantum number in physics.
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explain what to expect: in the derivation of the original Wigner-Eckart Theorem in
Section 4.1.2, we saw that a kernel operator could be expressed as K̃ : Vj ⊗ Vl → VJ .
This was in turn equal to K̃ = c ◦ p for an endomorphism c : VJ → VJ and the pro-
jection p corresponding to the appearance of VJ in the direct sum decomposition of
Vj ⊗ Vl. This time, however, VJ can be found very often in L2

K(X)⊗ Vl, namely:

1. For each isomorphism class of irreps j ∈ Ĝ,

2. For each appearance i = 1, . . . ,mj of the irrep Vj in L2
K(X) and

3. For each appearance s = 1, . . . , [J(jl)] of the irrep VJ in the tensor product rep-
resentation Vj⊗Vl. [J(jl)] can be zero, which means that j does not contribute.

We therefore expect K̃ to be a whole sum of compositions of endomorphisms with
projections, for each combination of valid j, i and s. Furthermore, the speci�c struc-
ture of L2

K(X) will be exploited as well by using orthogonal projections from L2
K(X)

to summands Vji. Overall, we hope this su�ciently motivates the theorem:

Theorem4.1.13 (Wigner-Eckart Theorem for Steerable Kernels). We state the theorem
in three parts:

1. (Basis-independent Wigner-Eckart for Kernel Operators) There is an isomorphism
of vector spaces

Rep :
⊕
j∈Ĝ

mj⊕
i=1

[J(jl)]⊕
s=1

EndG,K(VJ)→ HomG,K(L
2
K(X),HomK(Vl, VJ))

which is given by

[Rep((cjis)jis)(ϕ)] (vl) :=
∑
j∈Ĝ

mj∑
i=1

[J(jl)]∑
s=1

[j]∑
m=1

〈
Y m
ji

∣∣ϕ〉 · cjis (pjis(Y m
ji ⊗ vl)

)
(4.1)

where (cjis)jis is a tuple of endomorphisms, ϕ : X → K is any square-integrable
function and vl ∈ Vl is any element.

2. (Basis-independent Wigner-Eckart for Steerable Kernels) There is an isomorphism
of vector spaces

Ker :
⊕
j∈Ĝ

mj⊕
i=1

[J(jl)]⊕
s=1

EndG,K(VJ)→ HomG(X,HomK(Vl, VJ))

which is given by

[Ker((cjis)jis)(x)] (vl) :=
∑
j∈Ĝ

mj∑
i=1

[J(jl)]∑
s=1

[j]∑
m=1

〈
Y m
ji

∣∣x〉 · cjis (pjis(Y m
ji ⊗ vl)

)
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where (cjis)jis is a tuple of endomorphisms, x ∈ X is any point and vl ∈ Vl is any
element. Here,

〈
Y m
ji

∣∣x〉 := limU∈Ux
〈
Y m
ji

∣∣δU〉, which is according to Proposition
3.2.10 equal to Y m

ji (x).

3. (Basis-dependent Wigner-Eckart for Steerable Kernels) Let K = Ker((cjis)jis) be
the steerable kernel corresponding to the tuple of endomorphisms (cjis)jis according
to the isomorphism above. Then the matrix elements ofK(x) ∈ HomK(Vl, VJ) are
explicitly given by

〈JM |K(x)|ln〉 =∑
j∈Ĝ

mj∑
i=1

[J(jl)]∑
s=1

[j]∑
m=1

[J ]∑
M ′=1

〈
JM

∣∣cjis∣∣JM ′〉 · 〈s, JM ′∣∣jmln〉 · 〈Y m
ji

∣∣x〉. (4.2)

Remark 4.1.14. Before we come to the proof, we have some remarks to make about
this theorem:

1. In line with the usual convention, we call the
〈
JM

∣∣cjis∣∣JM ′〉 the generalized
reduced matrix elements of the representation operator K. Di�erent from the
situation in physics, these can depend nontrivially on the speci�c basis indices
M andM ′. If the space of endomorphisms is 1-dimensional, as is the case when
considering representations overC, then each cjis is a diagonal matrix, meaning
that it is characterized by only one complex number, for simplicity with the same
name cjis. Then one has 〈JM |cjis|JM ′〉 = δMM ′ · cjis and the sum over M ′

disappears. What this means for the matrix form of basis kernels of steerable
CNNs will be discussed in Corollary 4.1.16.

2. The coe�cients
〈
s, JM ′

∣∣jmln〉 are as before the Clebsch-Gordan coe�cients.
Note that the input x of K appears only in

〈
Y m
ji

∣∣x〉. Those two parts of the
right-hand side of the formula are always the same, independent of the kernel
K .

3. The Clebsch-Gordan coe�cients are traditionally de�ned with respect to iso-
metric embeddings ljis : VJ → Vj ⊗ Vl since this makes them less ambiguous.
However, we mention that the property of being isometric is no requirement
for the construction of Clebsch-Gordan coe�cients or the proof of the Wigner-
Eckart Theorem, being equivariant and linear is su�cient. This then means that
the copies ls(Y M

J ) do not anymore form an orthonormal basis. We will use this
relaxation in the example in Section 6.2, where we do not want to be bothered
with obtaining isometric embeddings.

4. The names for the isomorphisms in the theorem are meant as follows: Rep is
the map that maps a tuple of endomorphisms to a kernel operator, which is
a special representation operator. Ker maps a tuple of endomorphisms to a
steerable kernel. It is not meant as a notation for a kernel in the sense of a
nullspace in linear algebra.
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5. Furthermore, a reader with a background in abstract algebra may wonder why
we build the direct sum of spaces of endomorphisms instead of the direct prod-
uct. The reason is that a posteriori, it turns out that only �nitely many j con-
tribute nontrivially, and so the direct sum is equal to the direct product. For a
proof of the �niteness, see Remark 4.1.17 below.

6. As a last remark, we want to mention that part 1 of the theorem is not the most
general version we could do. We chose to formulate the Wigner-Eckart Theorem
for L2

K(X) speci�cally since this is the space we use it for. However, an appro-
priate isomorphism can probably be formulated for any unitary representation
instead of L2

K(X), only that we then need to take care that we replace direct
sums by direct products if the index sets on the left side are in�nite. Addition-
ally, Vl and VJ could be replaced by arbitrary �nite-dimensional representations,
and an appropriate adaptation of the theorem would apply. Whether Vl and VJ
could also be replaced by in�nite-dimensional unitary representations would
need to be explored, but an extension to such a case seems possible.

Proof of Theorem 4.1.13. The proof of 1 will be done in Section 4.2 since it requires
some work. However, the proofs of 2 and 3 are relatively straightforward once we
believe 1 and so we do them here:
From 1 we know that Rep is an isomorphism. Furthermore, from Theorem 3.1.7 we
know that

(·)|X : HomG,K(L
2
K(X),HomK(Vl, VJ))→ HomG,K(X,HomK(Vl, VJ))

is an isomorphism as well, and this is given by K|X(x) := limU∈Ux K(δU), where we
take the limit over the directed set of open neighborhoods of x. We de�ne the isomor-
phism Ker now simply as the composition, i.e. Ker := (·)|X ◦Rep. This isomorphism
is then explicitly given by:

[Ker((cjis)jis)(x)] (vl) = [Rep((cjis)jis)|X(x)] (vl)
= lim

U∈Ux
[Rep((cjis)jis)(δU)] (vl)

= lim
U∈Ux

∑
j∈Ĝ

mj∑
i=1

[J(jl)]∑
s=1

[j]∑
m=1

〈
Y m
ji

∣∣δU〉 · cjis (pjis(Y m
ji ⊗ vl)

)
=
∑
j∈Ĝ

mj∑
i=1

[J(jl)]∑
s=1

[j]∑
m=1

[
lim
U∈Ux

〈
Y m
ji

∣∣δU〉 ] · cjis (pjis(Y m
ji ⊗ vl)

)
=
∑
j∈Ĝ

mj∑
i=1

[J(jl)]∑
s=1

[j]∑
m=1

〈
Y m
ji

∣∣x〉 · cjis (pjis(Y m
ji ⊗ vl)

)
.

This already proves 2. Now, in the following computation, we will use that cjis◦pjis =
cjis ◦ idVJ ◦pjis and that, inspired by notation in physics, we can write the identity on
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VJ as idVJ =
∑[J ]

M ′=1

∣∣Y M ′
J

〉
·
〈
Y M ′
J

∣∣. For 3, we then compute

〈JM |K(x)|ln〉
=
〈
Y M
J

∣∣K(x)
∣∣Y n
l

〉
=
〈
Y M
J

∣∣ [Ker((cjis)jis)(x)] (Y
n
l )
〉

=
∑
j∈Ĝ

mj∑
i=1

[J(jl)]∑
s=1

[j]∑
m=1

〈
Y m
ji

∣∣x〉 · 〈Y M
J

∣∣cjis ◦ pjis∣∣Y m
ji ⊗ Y n

l

〉
=
∑
j∈Ĝ

mj∑
i=1

[J(jl)]∑
s=1

[j]∑
m=1

[J ]∑
M ′=1

〈
Y m
ji

∣∣x〉 · 〈Y M
J

∣∣cjis∣∣Y M ′

J

〉
·
〈
Y M ′

J

∣∣pjis∣∣Y m
ji ⊗ Y n

l

〉
=
∑
j∈Ĝ

mj∑
i=1

[J(jl)]∑
s=1

[j]∑
m=1

[J ]∑
M ′=1

〈
JM

∣∣cjis∣∣JM ′〉 · 〈s, JM ′∣∣jmln〉 · 〈Y m
ji

∣∣x〉.
In the last step, we used the Clebsch-Gordan coe�cients, see De�nition 4.1.6 and, as
mentioned before, that pjis is adjoint to the embedding ljis : VJ → Vji ⊗ Vl.

4.1.4. General Steerable Kernel Bases
Now that we have a Wigner-Eckart Theorem for steerable kernels, which gives a one-
to-one correspondence between steerable kernels and tuples of endomorphisms, we
can �nally describe what a basis of the space of steerable kernels looks like. For this,
additionally to the notation in the last section, we assume that {cr | r ∈ R} is a basis
of EndG,K(VJ).

Theorem 4.1.15 (Steerable kernel bases). A basis of the space of steerable kernels
HomG(X,HomK(Vl, VJ)) is given by

{Kjisr : X → HomK(Vl, VJ) | j ∈ Ĝ, i ∈ {1, . . . ,mj}, s ∈ {1, . . . , [J(jl)]}, r ∈ R},

where the basis kernels Kjisr have matrix elements

〈JM |Kjisr(x)|ln〉 =
[j]∑
m=1

[J ]∑
M ′=1

〈
JM

∣∣cr∣∣JM ′〉 · 〈s, JM ′∣∣jmln〉 · 〈Y m
ji

∣∣x〉. (4.3)

Now, for eachM ′ ∈ {1, . . . , [J ]}, let CGM ′

J(jl)s be the [j]× [l]-matrix of Clebsch-Gordan
coe�cients 〈s, JM ′|jmln〉, with only m and n varying. Furthermore, let 〈Yji|x〉 be the
row vector with entries

〈
Y m
ji

∣∣x〉 for m = 1, . . . , [j]. In matrix-notation with respect to
the bases {Y M

J } ⊆ VJ and {Y n
l } ⊆ Vl, we can then express the basis kernel Kjisr(x) :

Vl → VJ as follows:

Kjisr(x) = cr ·

〈Yji|x〉 · CG
1
J(jl)s

...
〈Yji|x〉 · CG[J ]

J(jl)s

 . (4.4)
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In this formula, all “dots” mean conventional matrix multiplication and cr is by abuse of
notation the matrix of the endomorphism cr.

Proof. For the �rst statement, note that a basis for
⊕

j∈Ĝ
⊕mj

i=1

⊕[J(jl)]
s=1 EndG,K(VJ)

is given by all the tuples tjisr := (0, . . . , cr, . . . , 0) that have cr at position jis, for
all combinations of j, i, s and r. Thus, from the isomorphism Ker in the second part
of Theorem 4.1.13 we obtain that all Kjisr := Ker(tjisr) together form a basis for
the space of steerable kernels HomG(X,HomK(Vl, VJ)). When applying the basis-
dependent form in part 3 of that theorem to Kjisr, the �rst three sums in Equation 4.2
just disappear since tjisr is zero almost everywhere. Furthermore, cjis is replaced by
the basis endomorphism cr. We obtain the claimed result.
For the �nal statement on the matrix representation, note that

〈JM |Kjisr(x)|ln〉 =
∑[j]

m=1

∑[J ]

M ′=1

〈
JM

∣∣cr∣∣JM ′〉 · 〈s, JM ′∣∣jmln〉 · 〈Y m
ji

∣∣x〉
=
∑[J ]

M ′=1

〈
JM

∣∣cr∣∣JM ′〉∑[j]

m=1

〈
Y m
ji

∣∣x〉 · 〈s, JM ′∣∣jmln〉
= cMr ·

(∑[j]
m=1

〈
Y m
ji

∣∣x〉 · 〈s, JM ′|jmln〉
)[J ]
M ′=1

= cMr ·
(〈
Yji
∣∣x〉 · CGM ′−n

J(jl)s

)[J ]
M ′=1

.

Here, cMr is the M ’th row of the matrix cr. The result follows by dropping the indices
M and n.

The next corollary means that endomorphisms can be ignored if the space of endo-
morphisms is 1-dimensional, which is in particular the case if K = C.

Corollary 4.1.16. Assume that dim(EndG,K(VJ)) = 1. Then a basis of steerable kernels
K : X → HomK(Vl, VJ) is given by all Kjis with matrices

Kjis(x) =

〈Yji|x〉 · CG
1
J(jl)s

...
〈Yji|x〉 · CG[J ]

J(jl)s

 . (4.5)

In particular, this is the case if K = C.

Proof. In this case, a basis for the space of endomorphisms is given by the single en-
domorphism c = idVJ . Postcomposition with the identity does not change the matrix,
and so the result follows.
ForK = Cwe have dim(EndG,C(VJ)) = 1 by Schur’s Lemma 4.1.8, and thus the result
follows.

We end with two remarks regarding the parameterization of steerable CNNs. The �rst
remark considers the case of steerable CNNs of the form K : X → HomK(Vl, VJ) on
a homogeneous space X . The second remark connects this back to the case that X is
an orbit embedded in Rn.
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Remark 4.1.17 (Parameterization in the abstract). First of all, we want to understand
that there are only �nitely many basis kernels Kjisr. To this end, note that the index
sets for i, s, and r are necessarily �nite for all j, and thus we need to understand
the �nite range of j. A priori, j can run over the whole set Ĝ, which can be in�nite.
But, as we argue now, for only �nitely many j ∈ Ĝ we can have VJ in a direct sum
decomposition of Vj ⊗ Vl, which rescues the �niteness:
Namely, VJ is in the direct sum decomposition of Vj ⊗ Vl if and only if the vector
space HomG,K(Vj ⊗ Vl, VJ) is nonzero by Schur’s Lemma 2.2.6. By the hom-tensor
adjunction that we will show in Proposition 4.2.4 in more generality, this is the case
if an only if HomG,K(Vj,HomK(Vl, VJ)) is nonzero. And �nally, this is the case if and
only if Vj is in a direct sum decomposition of the representation HomK(Vl, VJ), again
by Schur’s Lemma. Now, since HomK(Vl, VJ) is �nite-dimensional, this can only be
the case for �nitely many j, and so we are done4.
Overall, this means the following: To parameterize an equivariant neural network, one
needs arbitrary parameters wjisr ∈ K for all combinations of j ∈ Ĝ, i ∈ {1, . . . ,mj},
s ∈ {1, . . . , [J(jl)]} and r ∈ R. A general steerable Kernel K : X → HomK(Vl, VJ)
then takes the form

K =
∑

j∈Ĝ

∑mj

i=1

∑[J(jl)]

s=1

∑
r∈R

wjisrKjisr,

with the basis kernels Kjisr as in Theorem 4.1.15.
Remark 4.1.18 (Parameterization in practice). Remember that our original motivation
for the use of homogeneous spaces in Section 3.1.1 was that Rn splits as a disjoint
union of homogeneous spaces, on which the kernel constraint acts completely sep-
arately. For simplicity, we assume that the compact group acting on Rn is either
G = SO(n) or G = O(n), but the general ideas hold also for the �nite transformation
groups in Rn — the only di�erence is that in these �nite cases, the set of representa-
tives of orbits becomes larger.
Thus, Rn splits into orbits Rn =

⊔
r≥0 S

n−1(r), where Sn−1(r) is the sphere of radius
r (with S(0) = {0} being a single point).
We’ll discuss the orbit X0 = {0}, the origin, separately below. But note that all other
orbits are necessarily homeomorphic to each other and thus can be treated on equal
footing. Therefore, let Sn−1 be the standard sphere with radius 1 and Kjisr : S

n−1 →
HomK(Vl, VJ) be basis kernels for this choice. Then for a general steerable kernel
K : Rn → HomK(Vl, VJ) there are arbitrary functions wjisr : R>0 → K such that,
for all x ∈ Rn \ {0}, we have:

K(x) =
∑

j∈Ĝ

∑mj

i=1

∑[J(jl)]

s=1

∑
r∈R

wjisr(‖x‖) ·Kjisr

(
x

‖x‖

)
.

For x = 0, we might use our heavy theory to solve the kernel constraint, but it is more
illuminating to do it from scratch since this case is so simple: we haveK(0) : Vl → VJ ,

4Of course, for this argument, we need the uniqueness of direct sum decompositions. But this follows
if we assume the Hom-representation to be unitary, which works by Proposition 2.1.20 and then
using the Krull-Remak-Schmidt Theorem, Proposition 2.2.16.
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and the kernel constraint takes the form

K(0) = K(g · 0) = ρJ(g) ◦K(0) ◦ ρl(g)−1

for all g ∈ G, which is equivalent to K(0) ◦ ρl(g) = ρJ(g) ◦K(0) for all g ∈ G. This
just means that K(0) : Vl → VJ is an intertwiner, and by Schur’s Lemma 2.2.6 it is
either 0 if l 6= J or an arbitrary endomorphism VJ → VJ if l = J . Thus, assuming
l = J and choosing basis-endomorphisms cr : VJ → VJ , there are coe�cientswr ∈ K
such that

K(0) =
∑

r∈R
wr · cr.

The reader may �nd it interesting to check that this solution is precisely what is also
predicted by our theory using that L2

K({0}) ∼= K is just isomorphic to the trivial
representation of G.
All in all, we now know what the most general steerable kernels look like. In practice,
one needs to choose the functions wjisr : R>0 → K. For representations over the
real numbers, i.e. with K = R, one choice is to only consider �nitely many radii and
Gaussian radial pro�les around them. Then instead of learning the whole function
wjisr, one learns �nitely many real parameters that choose “how activated” a basis
kernel Kjisr is for a certain radius. This is for example the route taken in Weiler et al.
[8], Weiler and Cesa [9], Weiler et al. [24]. If one deals with complex representations,
one usually goes the same route, only that the parameters that choose how “activated”
the basis kernels are will then be complex numbers. One can either parameterize them
as a+ibwith a real part a and a complex part b. This intuitively means that a activates
the standard version of the kernel Kjisr, whereas b activates the kernel iKjisr, which
can be imagined as a version of the kernel turned by 90◦. One other possibility is to
parameterize a complex number as α ·eiβ with a scaling factor α > 0 and a phase shift
β. This is the route chosen in Worrall et al. [4].
In Chapter 6 we will look at examples of determining the basis kernels Kjisr, which
will hopefully further illuminate the theorem. In the next section, we go back to the
theory and prove the remaining parts of the Wigner-Eckart Theorem.

4.2. Proof of the Wigner-Eckart Theorem for Kernel
Operators

In this section, we prove the �rst part of Theorem 4.1.13, the Wigner-Eckart Theorem
for Kernel Operators, since we have skipped this in the last section. It is not nec-
essary to read this section and the reader may wish to directly go to the chapter on
related work 5 or the chapter on examples 6. We will make frequent use of topological
concepts from Appendix A.1 in this section.
The strategy is the following: in Section 4.2.1, we show that

HomG,K(L
2
K(X),HomK(Vl, VJ)) ∼= HomG,K

(⊕
j∈Ĝ

mj⊕
i=1

Vji,HomK(Vl, VJ)

)
,
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which basically means that we can ignore the “topological closure” of the direct sum
which is dense in L2

K(X). This works, intuitively, since kernel operators are continu-
ous, and so they are completely determined by what they do on a dense subset. Then,
in section 4.2.2, we show that

HomG,K

(⊕
j∈Ĝ

mj⊕
i=1

Vji,HomK(Vl, VJ)

)
∼= HomG,K

(⊕
j∈Ĝ

mj⊕
i=1

Vji ⊗ Vl, VJ
)
,

which is the main step that we need in order to be able to make use of the Clebsch-
Gordan coe�cients, namely when we decompose the tensor product. Finally, in Sec-
tion 4.2.3, we �nish the proof of Theorem 4.1.13.

4.2.1. Reduction to a Dense Subspace of L2
K(X)

In this section, we reduce the statement to representation operators on
⊕

j∈Ĝ
⊕mj

i=1 Vji.
For simplicity, we write the double direct sum from now on as

⊕
ji.

Furthermore, remember that Vl and VJ are �nite-dimensional, and thus HomK(Vl, VJ)
can be identi�ed with matrices in K[J ]×[l]. This space is a Euclidean space and thus
has a scalar product and consequently also a norm, see Appendix A.1. Consequently,
each kernel operator is a continuous map between normed vector spaces, which we’ll
use in the following.
A short terminological note: kernel operators are just representation operators on
L2
K(X) and only have their name due to the relation to steerable kernels. Thus, the

terminological di�erence to representation operators in the following reduction result
has no further meaning:

Lemma 4.2.1. The restriction map

HomG,K(L
2
K(X),HomK(Vl, VJ))→ HomG,K

(⊕
ji
Vji,HomK(Vl, VJ)

)
given byK 7→ K|⊕

ji Vji
, between kernel operators on the left and representation operators

on the right is an isomorphism.

Proof. First of all, the kernel operators on the left are actually uniformly continuous
by Proposition A.1.18. Thus, by Lemma A.1.22, the restriction map is an injection into
uniformly continuous representation operators on

⊕
ji Vji. The set of all these maps is

equal to the set of all representation operators by Proposition A.1.18 again.
Thus, in order to be �nished, we only need to see that the unique extension of a rep-
resentation operator K :

⊕
ji Vji → HomK(Vl, VJ) to a continuous function K :

L2
K(X) → HomK(Vl, VJ) is a kernel operator, which means it is linear and equivari-

ant.
For linearity, let a ∈ K and f ∈ L2

K(X). Let (fk)k be a sequence in
⊕

ji Vji that
converges to f . Using the continuity of K and the linearity of K we obtain:

K(a · f) = K
(
lim
k→∞

(a · fk)
)
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= lim
k→∞
K(a · fk)

= lim
k→∞
K(a · fk)

= lim
k→∞

a · K(fk)

= a · lim
k→∞
K(fk)

= a · K
(
lim
k→∞

fk
)

= a · K(f).

Linearity with respect to addition can be shown similarly. For the equivariance we can
essentially argue in the same way, only that we additionally need to use the continuity
of the representations λ : G → U(L2

K(X)) and ρHom : G → AutK(HomK(Vl, VJ)).

4.2.2. The Hom-Tensor Adjunction

Lemma 4.2.2. Let K :
⊕

li Vli → V be linear and equivariant, where V is an irrep.
Then K is continuous.

Proof. By Schur’s Lemma 4.1.85, we know thatK factors through the irreducible repre-
sentations that are isomorphic to V . That is, let Vj be that irrep and pji :

⊕
li Vli → Vji

be the canonical projections. Then there are intertwiners ci : Vji → V such that
K =

∑
i ci ◦ pji. Each ci is continuous since it is a linear function between �nite-

dimensional normed vector spaces. Since also summation on normed vector spaces is
continuous, we only need to show that the projections pji are continuous.
This follows from the following fact on how the norm on

⊕
li Vli is composed from

the norms on each Vli: For an element f =
∑

li fli ∈
⊕

li Vli with fli ∈ Vli, we have:

‖f‖2 =
∑

li
‖fli‖2.

The reason for this is that the Vli are perpendicular to each other. Consequently, if
(fk)k with fk ∈

⊕
li Vli converges to 0, then also (pji(f

k))k = (fkji)k converges to
0, which shows the continuity of pji in 0 and thus general continuity by Proposition
A.1.18.

Remark 4.2.3. Note the curious fact that we cannot get rid of the equivariance con-
dition in the preceding Lemma. I.e., if we have a linear function K :

⊕
l Vl → V ,

then we cannot deduce that K is continuous. We omit the index i for simplicity. If
equivariance is no requirement, then we only deal with vector spaces, which are in

5Schur’s Lemma applies since it is a statement about irreducible representations which are necessarily
�nite-dimensional. This means that the continuity condition in the de�nition of intertwiners is
vacuous and thus we don’t need to worry about K not being continuous a priori.
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general isomorphic to spaces of (maybe in�nite) tuples of elements inK. Thus, let the
function K :

⊕
l∈NK→ K given by

(al)l 7→
∑

l
l · al.

This is linear but not continuous in 0. The latter can be seen by considering the se-
quence (ak)k with ak = (0, . . . , 0, 1

k
, 0, . . . ) that has value 1

k
on position k and other-

wise only zeros. This sequence converges to the 0-sequence in norm. However, we
have K(ak) = 1 for all k, thus the images do not converge to 0 = K(0). �

From the preceding lemma, we are able to obtain the following alternative description
of representation operators:

Proposition 4.2.4 (Hom-tensor Adjunction). The map

(̃·) : HomG,K

(⊕
ji
Vji,HomK(Vl, VJ)

)
→ HomG,K

((⊕
ji
Vji

)
⊗ Vl, VJ

)
given by

K̃(vj ⊗ vl) := [K(vj)] (vl)

is an isomorphism.

Proof. For continuity, note the following: by straightforward extensions of Lemma
4.2.2, all linear and equivariant maps

⊕
ji Vji → HomK(Vl, VJ) and

(⊕
ji Vji

)
⊗Vl →

VJ are necessarily continuous, and thus we can ignore continuity altogether. The rest
of the proof can be done as in Agrawala [26]. For illustrating the most important part,
we show that K̃ is actually equivariant:

K̃
(
[(ρj ⊗ ρl)(g)] (vj ⊗ vl)

)
= K̃

(
[ρj(g)] (vj)⊗ [ρl(g)] (vl)

)
= [K(ρj(g)(vj))] (ρl(g)(vl))
=
[
ρHom(g)(K(vj))

]
(ρl(g)(vl))

=
(
ρJ(g) ◦ K(vj) ◦ ρl(g)−1

)
(ρl(g)(vl))

= ρJ(g)(K(vj)(vl))
= ρJ(g)(K̃(vj ⊗ vl)).

Remark 4.2.5. Some readers may wonder why this is called an adjunction. With re-
moving some of the notation in the Proposition, one has

HomG,K(T,HomK(U, V )) ∼= HomG,K(T ⊗ U, V ).

Now, for notational clarity, set F := HomK(U, ·) and H := (·) ⊗ U and remove the
subscripts. Then the formula can be written as

Hom(T, F (V )) ∼= Hom(H(T ), V ).
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With replacing the notation if the Hom-spaces with a scalar product, and the isomor-
phism sign with equality, this reads as follows:

〈T |F (V )〉 = 〈H(T )|V 〉 .

Similar to adjoints in Hilbert spaces, we can then view F and H as adjoint to each
other. In categorical terms, they are a pair of adjoint functors, see Lane et al. [27].

4.2.3. Proof of Theorem 4.1.13
After the work done in the prior sections, we are ready to complete the proof of The-
orem 4.1.13!

Proof of Theorem 4.1.13. Only the �rst part of that theorem still needs to be proven.
We have the following string of isomorphisms, which we will explain below:

HomG,K(L
2
K(X),HomK(Vl, VJ)) ∼= HomG,K

(⊕
ji
Vji,HomK(Vl, VJ)

)
∼= HomG,K

((⊕
ji
Vji
)
⊗ Vl, VJ

)
∼= HomG,K

(⊕
ji
(Vji ⊗ Vl), VJ

)
∼=
⊕
ji

HomG,K(Vji ⊗ Vl, VJ)

∼=
⊕
ji

[J(jl)]⊕
s=1

HomG,K(VJ , VJ)

=
⊕
j∈Ĝ

mj⊕
i=1

[J(jl)]⊕
s=1

EndG,K(VJ).

The steps are justi�ed as follows:

1. For the �rst step, use Lemma 4.2.1.

2. For the second step, use Proposition 4.2.4.

3. For the third step, use that there is a natural isomorphism
(⊕

ji Vji
)
⊗ Vl ∼=⊕

ji(Vji ⊗ Vl).

4. For the fourth step, use that linear equivariant maps can be described on each
direct summand individually (and that we do not need to worry about continuity
due to Lemma 4.2.2).

5. For the �fth step, precompose with the linear equivariant isometric embeddings
ljis : VJ → Vji⊗Vl and use, again, that linear equivariant maps can be described
on each direct summand individually. Furthermore, use Schur’s Lemma 2.2.6 in
order to see that the other summands disappear.
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6. The last step is just a reformulation.
Now, we call the string of isomorphisms from right to left

Rep :
⊕
j∈Ĝ

mj⊕
i=1

[J(jl)]⊕
s=1

EndG,K(VJ)→ HomG,K(L
2
K(X),HomK(Vl, VJ))

and are only left with understanding that it is actually given by Equation 4.1. For this,
we take a tuple (cjis)jis of endomorphisms and explicitly trace back “where it comes
from”. As in Lemma 4.2.2, let pji :

⊕
j′i′ Vj′i′ → Vji be the canonical projection, which

is by Proposition A.2.15 explicitly given by pji(ϕ) =
∑[j]

m=1

〈
Y m
ji

∣∣ϕ〉Y m
ji . Furthermore,

let pjis : Vji⊗Vl → VJ be the projections corresponding to the embeddings ljis. Then
from bottom to top, (cjis)jis gets transformed as follows:

(cjis)jis 7→
( [J(jl)]∑

s=1

cjis ◦ pjis
)
ji

7→
∑
j∈Ĝ

mj∑
i=1

[J(jl)]∑
s=1

cjis ◦ pjis ◦ (pji ⊗ idVl)

7→ Rep((cjis)jis)

In the very last step, the hom-tensor adjunction Proposition 4.2.4 is used, but in the
other direction. As an illustration, the composition of functions over which we sum
can be shown in the following commutative diagram:⊕

i′j′ Vj′i′ ⊗ Vl Vji ⊗ Vl VJ VJ
pjis⊗idVl

cjis◦pjis◦(pji⊗idVl )

pji cjis

We obtain:

[Rep((cjis)jis)(ϕ)] (vl) =
∑
j∈Ĝ

mj∑
i=1

[J(jl)]∑
s=1

[
cjis ◦ pjis ◦ (pji ⊗ idVl)

]
(ϕ⊗ vl)

=
∑
j∈Ĝ

mj∑
i=1

[J(jl)]∑
s=1

(cjis ◦ pjis)(pji(ϕ)⊗ vl)

=
∑
j∈Ĝ

mj∑
i=1

[J(jl)]∑
s=1

(cjis ◦ pjis)
( [j]∑
m=1

〈
Y m
ji

∣∣ϕ〉Y m
ji ⊗ vl

)

=
∑
j∈Ĝ

mj∑
i=1

[J(jl)]∑
s=1

[j]∑
m=1

〈
Y m
ji

∣∣ϕ〉 · cjis (pjis (Y m
ji ⊗ vl

))
.

That, �nally, �nishes the proof.
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Now that we are �nally �nished with developing our theory, we are ready to compare
what we did with much of the prior work that has emerged in the preceding years.
After that, we will discuss many example applications of our theory in Chapter 6.
We structure this chapter as follows: In Section 5.1 we look at prior work on E(2)-
equivariant CNNs, since their solution of the kernel constraint ultimately shows strong
similarities to our work. Afterward, in Section 5.2, we look at other work that falls
within the framework of steerable CNNs onR2 orR3. This also includes work on �nite
transformation groups, namely group convolutional CNNs, and harmonic networks,
even though this research has been framed without the use of the term “steerable”.
Afterward, in Section 5.3, we brie�y look at gauge equivariant CNNs, which are gener-
alizations of steerable CNNs that ful�ll the same kernel constraint and are thus covered
by our work. They are physics-inspired, as we are, and so in Section 5.4 we discuss
more work that is inspired by physics and representation theory. This includes the use
of Clebsch-Gordan coe�cients, but also higher-dimensional symmetry groups like the
Lorentz group appearing in special relativity.
Finally, in Section 5.5, we look at prior purely theoretical work. This prior work di�ers
from us, in that it does not solve the kernel constraints that it describes.

5.1. General E(2)-Equivariant Steerable CNNs
Similar to our work is Weiler and Cesa [9]. In this paper, the authors look at pla-
nar CNNs that can, for example, process image data. Instead of only looking at one
transformation group, they actually look at all topologically closed subgroups of O(2)
and derive and implement steerable CNNs for all of them. Those subgroups are O(2),
SO(2), and CN and DN for natural numbers N ∈ N.
It pays o� to look at their strategy for solving the kernel constraint and to compare
it with our method. For example, in their derivation for SO(2) and for irreducible, 2-
dimensional input- and output representations, they look at kernels K : S1 → R2×2,
where S1 is homeomorphic to the orbit under the action of SO(2) of any point 0 6=
x ∈ R2. Their ansatz is to expand each matrix element of a steerable kernelK , namely
Kjk : S

1 → R for j, k ∈ {1, 2}, in a Fourier basis:

Kjk =
∞∑
l=0

Ajk,l cosl+Bjk,l sinl .

Here, we mean cosl(φ) =
√
2 cos(l · φ) and sinl(φ) =

√
2 sin(l · φ), even though in

their work the normalization by
√
2 was not present. For l = 0, sinl = 0, so it can also
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be omitted. What they then essentially did was to use the kernel constraint in order to
determine the Fourier coe�cients Ajk,l and Bjk,l. This then leads to the general form
of a steerable kernel. Remember from Fourier theory that the Fourier coe�cients can
be determined as1

Ajk,l =

∫
S1

cosl(x)Kjk(x)dx, Bjk,l =

∫
S1

sinl(x)Kjk(x)dx.

Now we wonder: What would their strategy have looked like, would they have used
our method? In this case, in oder to determine the general form ofK , one looks at the
corresponding kernel operator K̂ : L2

R(S
1)→ R2×2 which is given by

K̂(f) =

∫
S1

f(x)K(x)dx.

Then one would use the Wigner-Eckart Theorem 4.1.13 in order to determine the ma-
trix elements of K̂ . What this ultimately means is to determine K̂(f) for all orthonor-
mal basis functions f , which are sinl and cosl. Exemplary for cosl, we obtain:

K̂(cosl) =

∫
S1

cosl(x)K(x)dx =

(∫
S1

cosl(x)Kjk(x)

)
j,k

= (Ajk,l)j,k .

This is exactly the same data as before! So, probably without knowing, Weiler and
Cesa [9] determined the matrix elements of a kernel operator in order to �gure out a
solution for these kernels. Our work can then interpreted as follows: instead of view-
ing these matrix elements as separate, we bundle them together to one object which
we call a kernel operator and then use general ideas from representation theory and
physics in order to determine their form. So, without intending to do so, we ulti-
mately generalized and clari�ed the method in their work. In Section 6.2, we rederive
the kernel constraint for SO(2)-equivariant kernels from scratch with our method and
demonstrate that the results coincide.

5.2. Other Work on Steerable CNNs
Another interesting paper to compare with is 3D steerable CNNs [8]. In this paper,
the authors create steerable CNNs for the group SO(3) with the underlying �eld being
the real numbers R. Notably, their strategy is a bit di�erent from ours. They consider
kernels

K : S2 → HomR(Vl, VJ)

for irreducible representations ρl : SO(3) → O(Vl) and ρJ : SO(3) → O(VJ)
2. Us-

ing our method, they would consider square-integrable functions on S2 and view the
1In this formula, the measure on S1 is considered to be normalized so that µ(S1) = 1.
2Note that since we work with real representations, what we usually call “unitary” representations

are now orthogonal representations, and the unitary group is replaced by the orthogonal group.
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kernel as a map K̂ : L2
R(S

2) ⊗ Vl → VJ , after which they would extract irreducible
representations out of L2

R(S
2)⊗Vl using the Clebsch-Gordan decomposition. Instead,

they decompose the right Hom-space into irreducible representations. This works,
formally, by �rst constructing an isomorphism of representations

HomR(Vl, VJ) ∼= V ∗l ⊗ VJ (5.1)

where V ∗l is the dual vector space of Vl, consisting of linear functions from Vl toR. To
make this precise, one considers the dual representation ρ∗l : SO(3) → O(V ∗l ) given
by [

ρ∗l (g)(ϕ)
]
(vl) := ϕ

(
ρl(g)

−1(vl)
)
,

or more succinctly: ρ∗l (g)(ϕ) = ϕ◦ρl(g)−1. Then, on the tensor product, one can con-
sider the tensor product representation ρ∗l ⊗ρJ . Finally, one can build the isomorphism
in Equation 5.1 from right to left by mapping ϕ⊗ vJ to ϕvJ : Vl → VJ , vl 7→ ϕ(vl) · vJ .
Going this route, one can then decompose V ∗l ⊗ VJ into irreducible representations,
which leaves one with Clebsch-Gordan coe�cients which are di�erent from ours. The
reason is that they decompose the speci�c space V ∗l ⊗ VJ and search for arbitrary ir-
reducible representations in them, whereas we decompose Vj ⊗ Vl for arbitrary j and
always search for the speci�c representation ρJ in there.
An issue is the following: While one has an isomorphism ρ∗l

∼= ρl via the Bra-Ket
convention for real representations, which they exploit, one in general does not have
this isomorphism for complex representations. The reason is that the scalar product is
then only conjugate linear in the �rst component, and so the map Vl → V ∗l , vl 7→ 〈vl|
is not linear and thus no isomorphism (being an isomorphism requires to be linear). In
general, it can happen that there is no isomorphism between ρl and ρ∗l at all. Overall,
this leads us to believe that their method is less easy to generalize compared with
our route using the Wigner-Eckart Theorem, which provides one uni�ed story for all
compact groups and both �eldsR andC. In Section 6.5 the reader can �nd a derivation
of steerable kernel bases for SO(3) over the real numbers using our method.
Similar to 3D Steerable CNNs are tensor �eld networks [6]. They are also equivari-
ant with respect to the group SE(3) (meaning their compact transformation group
is SO(3)). Instead of operating with convolutions over an input �eld on a grid or,
more smoothly, on a smooth block inR3, they perform discrete convolution of �nitely
many input tensors at points with arbitrary positions. Thus, they can operate on point
clouds. Additionally, they have a self-interaction step in order to further process the
feature vectors individually at each point.
Their work is very similar to ours and it seems that their theoretical justi�cation is
essentially a special case of the theory developed in our work. Namely, they con-
sider input �elds of order l and process this with harmonic basis functions of order
j. Afterward, they linearly combine the result using Clebsch-Gordan coe�cients in
order to obtain an output �eld of order J . Comparing this with Equation 6.5 this
seems very similar to what we do. The main di�erence is that they do not mention
endomorphisms, di�erent from our general treatment in Equation 4.3: the reason is
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that the space of endomorphisms for each irreducible representation of SO(3) is 1-
dimensional, meaning that the identity can be chosen as the basis endomorphism.
This removes the endomorphisms from the equation.
Other foundational work in the realm of steerable CNNs are group convolutional
CNNs by Cohen and Welling [2]. This paper mainly considers the groups CN and
DN for N = 4. Group convolutional CNNs are basically steerable CNNs where only
the regular representation is considered. In the more general framework of steerable
CNNs, arbitrary �nite-dimensional representations are considered. For the regular
representations, solutions of the kernel constraint look as follows: one is allowed to
construct arbitrary �lters which then subsequently need to be copied and applied in
di�erent rotations and re�ections, one for each group element. This is di�erent from
our method, in which the input- and output representations are �rst decomposed into
irreducible representations, after which kernel solutions are computed for each pair of
irreducible input- and output representations individually. More contemporary work
on steerable CNNs like Weiler and Cesa [9] generally goes the route of decomposing
representations into irreducible parts, even when they consider regular representa-
tions of �nite groups. In Section 6.3, we discuss the example of the �nite group Z2

and show that the route of decomposing the regular representation into irreducible
subrepresentations leads to the same solution as in original group convolutional net-
works.
More recent work on group convolutional CNNs is Weiler et al. [24]. They deal with
the following problem: if one considers discrete rotation groups with more than four
rotation angles, then one must also rotate the �lters by all such angles. If the �lters
are sampled in a pixel-basis, then this leads to approximation errors since the grid of
the rotated �lter does not align anymore with the grid of the sample space. Therefore,
they go the route of choosing circular harmonics as their basis �lters and then only
learn the basis coe�cients of these. Instead of rotating the grid-sampled �lter, one
can then rotate the linear combination of harmonic basis �lters by doing a phase-shift
in the coe�cients. This alleviates the abovementioned problem. Additionally, they
�nd a generalized version of He’s weight initialization scheme [28] for an improved
initialization of the neural network.
After group convolutional networks, steerable CNNs were proposed for the �rst time
in a relatively modern formulation in Cohen and Welling [3]. They still worked with
�nite groups, but moved beyond the regular representation and already foreshadowed
that the framework will work for continuous groups as well. The representations
studied mostly in this work are so-called quotient representations of the group, of
which the regular representation is a special case, and which have the nice advantage
that they can be represented by permutation matrices. This allows to use regular
ReLUs as nonlinearities.
However, they also went beyond this and studied irreducible representations. These
cannot in general be represented by permutation matrices. However, they can, for the
�nite groups considered in the paper, be represented by so-called signed permutation
matrices, which allows the use of concatenated ReLUs introduced in Shang et al. [29].
They mention that more general representations are possible as well and that one can

80



5.3. Gauge Equivariant CNNs

assume them to be orthogonal (which we call unitary if the �eld K is not speci�ed)
since this allows to use any nonlinearity which only acts on the length of vectors. A
detailed theoretical investigation of di�erent nonlinearities can be found in Weiler and
Cesa [9].
Harmonic Networks [4] are steerable CNNs in which the compact transformation
group is U(1) and the �eld is the complex numbers C. Mathematically speaking, this
is the simplest case of a smooth transformation group: since the �eld is the complex
numbers, each endomorphism space is 1-dimensional by Schur’s Lemma 4.1.8, and so
the endomorphisms can be ignored. Also, it turns out that each tensor product of irre-
ducible representations is itself irreducible, and thus the Clebsch-Gordan coe�cients
can be ignored as well. Furthermore, the regular representation L2

K(U(1)) contains
each irreducible representation exactly once and the harmonic basis functions are just
the characters since all irreducible representations are 1-dimensional. Notably, when
I began developing the theory outlined in this work, I �rst focused solely on the case
of harmonic networks, since they seemed doable and still provided enough structure
to see the main parts of this theoretical work at play. We rederive harmonic networks
in Section 6.1.

5.3. Gauge Equivariant CNNs
Recently, so-called gauge equivariant neural networks were proposed as generaliza-
tions of steerable CNNs [7]. These are neural networks that operate on feature �elds
on Riemannian manifolds, with the aim to be applicable to curved and topologically
nontrivial surfaces like spheres for applications in domains such as medicine and cli-
mate science. Topologically nontrivial spaces pose a problem since it is a priori not
clear how to apply the kernel: there is no orientation (or reference frame) that is ulti-
mately preferred. For this reason, gauge equivariant CNNs go the route of expressing
feature �elds relative to gauges. This means that with respect to a certain local coor-
dinatization of the manifold, the feature �eld is expressed as a �eld of feature vector
coe�cients. Then, the kernel is also applied with respect to the coordinatization. For
two di�erent coordinate systems, the result of the convolution will then di�er. How-
ever, the goal is that they only di�er up to a gauge transformation. That is, the results
should describe the same quantity, just expressed with respect to the two di�erent
coordinate systems. When viewing coordinate changes as transformations of feature
coe�cient vectors (described by a representation of the so-called structure group), this
becomes a requirement of equivariance. If instead one takes the global view and con-
siders feature vectors as absolute quantities, this is in fact a requirement of invariance
with respect to the chosen gauges. Di�erent from steerable CNNs, the basic theory of
gauge equivariant CNNs does not involve global active transformations of the feature
�elds themselves, which is the main di�erence between those theories.
Crucially, Cohen et al. [7] showed that the constraint on the kernel which needs to
be ful�lled for the coordinate invariance is equal to the kernel constraint for steerable
CNNs. Thus, our theory also fully covers the question of how to parameterize kernels
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for gauge equivariant CNNs whenever the structure group is compact.
Similar networks were also considered by other authors. For example, Ruben Wiersma
[30] is very similar to gauge equivariant CNNs since it also makes use of their par-
allel transport. The �lters themselves are precisely the �lters also used in harmonic
networks [4].
Other work in that area is de Haan et al. [31]: here, gauge equivariant networks are
discussed that operate on general discrete meshes.

5.4. Other Networks Inspired by Representation
Theory and Physics

Gauge equivariant networks are physics-inspired, in the sense that the gauge symme-
tries that they preserve are the symmetries appearing in modern �eld theories. The
underlying mathematical foundations for these physical theories are representation-
theoretic. There is other work inspired by representation theory and physics as well.
We �rst compare with Clebsch-Gordan nets [32] in order to understand the di�er-
ences in how we and how they use the Clebsch-Gordan coe�cients. Clebsch-Gordan
nets operate on signals on the sphere and, after the �rst layer, operate fully in the
Fourier space of signals on the whole rotation group SO(3). The feature spaces are
then arbitrary complex �nite-dimensional SO(3)-representations which decompose
into irreducible representations. In the Fourier space, usual nonlinearities like ReLUs
cannot be meaningfully used for applications in image processing. One could trans-
form the signals back onto the group SO(3) for using those, however, this would
cause considerable computational cost as in spherical CNNs [12]. So instead, the au-
thors search for an appropriate non-linearity in the Fourier space itself. What they
choose is the following: For two irreducible representations ρl : SO(3) → U(Vl) and
ρl′ : SO(3)→ U(Vl′) which are in the feature space of a certain layer, they transform
the data using the canonical map into the tensor product:

⊗ : Vl × Vl′ → Vl ⊗ Vl′ .

This map is bilinear, and not linear, and thus they can use it as their nonlinearity. Then
they decompose Vl⊗Vl′ into irreducible subrepresentations. The explicit way of doing
so are the Clebsch-Gordan coe�cients. This gives then a linear isomorphism

C : Vl ⊗ Vl′ →
l+l′⊕

j=|l−l′|

Vj

after which they can go on to process signals living in irreducible representations.
In the linear, parameterized part of their processing, they just build arbitrary linear
combinations of features that live in irreducible representations of the same order l.
This is the most general linear function between features by a generalization of Schur’s
Lemma which is for example discussed in more detail in Bogatskiy et al. [5]. Note that
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if one considers real representations instead of complex ones, this generalized Schur’s
Lemma is not quite true: the “coe�cients” in the linear combinations of feature vectors
are then allowed to be arbitrary endomorphisms of the irreducible representation.
We note that Clebsch-Gordan nets di�er substantially from our work in how they
use the Clebsch-Gordan coe�cients: We use them in the description of our steerable
kernels, and as such they are in our work part of the linear transformation steps,
whereas in Clebsch-Gordan nets, these coe�cients are part of the nonlinear step in
the transformation.
Another very recent paper is Shutty and Wierzynski [33]. Their vision is to gen-
eralize equivariant neural networks to noncompact groups for which the theory is
more complicated. Therefore, they consider the Lorentz group SO(3, 1) as their point
group and want to build neural networks which are then equivariant to the Poincaré
group P3 = (R4,+) o SO(3, 1). This group plays a central role in special relativity
since it allows to formalize changes of inertial reference frames in Minkowski space-
time: not only are rotations and translations incorporated in this symmetry group, but
also so-called Lorentz boosts. The authors mention that this might have applications
in particle- and plasma physics. This is due to the high speeds involved in these ap-
plication areas which make relativistic methods necessary. They write, as we also do
in our work, that building neural networks that are equivariant with respect to such
a group requires one to know the following:

1. Explicit irreducible representations.

2. Clebsch-Gordan coe�cients.

3. Equivariant �lter functions, which we call harmonic basis functions in our work3.

They do not mention endomorphisms in this listing, probably because implicitly they
only have groups in mind that have trivial endomorphism spaces. Furthermore, they
do not engage with the question of how to parameterize general equivariant kernels,
i.e. how to ensure that one has found all equivariant �lter functions, and they do not
prove their kernel decomposition. They mention that Clebsch-Gordan coe�cients and
equivariant �lter functions can often be obtained analytically or numerically from the
irreducible representations once these are known, and are therefore concerned mainly
with how to �nd irreducible representations for de�ning their feature spaces. Instead
of deriving those analytically, they optimize for irreducible representations by �rst
optimizing for irreps of the corresponding Lie algebra, and then lifting this to irreps
of the Lie group by exponentiation.
It is important to note that the Lorentz group is not covered by our theory since it
is not compact, and thus the Peter-Weyl Theorem does not hold for such a group.
However, the fact that Shutty and Wierzynski [33] decompose their kernels in a very
similar way as we describe it suggests that a generalization of our results to such cases
might be possible. We discuss this in more detail in Chapter 7.

3These are not the complete kernels but only the functions that we notate with Y m
ji .
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Very similar and published almost at the same time is Bogatskiy et al. [5]. They also
consider Lorentz group equivariant networks, however operating completely in the
Fourier space. This means, as in the case of Clebsch-Gordan networks [32], that not
�elds of vectors living in irreps are transformed, but just vectors in irreps themselves.
In contrast to Shutty and Wierzynski [33], they derive instead of learn the irreducible
representations. Furthermore, only irreps over the complex numbers C are consid-
ered. What this means is that the linear part of the network just consists of arbitrary
linear mixings of components of the same irrep. In contrast, a mixing between di�er-
ent irreps, as in Clebsch-Gordan nets, happens only in the tensor product nonlinearity
in terms of a Clebsch-Gordan decomposition. They derive the Clebsch-Gordan coe�-
cients of the Lorentz group using the more well-known coe�cients for SU(2). Addi-
tionally, a fundamental approximation result is proven, showing that they are able to
approximate arbitrary continuous equivariant maps between �nite-dimensional rep-
resentations by their feed-forward neural network architecture. Additionally, they
provide much useful information about the representation theory of the groups in-
volved. Summarizing, we mention that this work di�ers from ours both in their use of
the Clebsch-Gordan coe�cients — which are a tool for decomposing tensor product
representations into irreducible subrepresentations in their case — and in the fact that
they do not process �elds of activations.

5.5. Prior Theoretical Work
Since our work is purely theoretical, it is interesting to compare with earlier purely
theoretical work. One recent paper is Esteves [34]. This paper is essentially a col-
lection of well-known facts about the theory of equivariant CNNs. While it does not
produce new results, it is a very concise introduction into the most important con-
cepts. As in our work as well, the text starts with an introduction of representation
theory, however only dealing with complex representations. Integration is, di�erent
from what we describe, treated for general locally compact groups instead of only
compact groups. Fourier analysis and the Peter-Weyl Theorem is treated as well, in-
cluding a description of the matrix coe�cients of the irreducible representations of
the groups SU(2) and SO(3).
In the last chapter, there is a collection and derivation of applications of these prelimi-
nary theories to the theory of equivariant CNNs. CNNs on �nite groups [35], spherical
CNNs [12], Clebsch-Gordan nets [32], 3D Steerable CNNs [8] (including a description
of the solution of the kernel constraint), and other theoretical papers [36] [11] are
discussed. We discuss these last two now:
Kondor and Trivedi [36] discuss scalar feature �elds that are globally de�ned on a ho-
mogeneous space of a compact transformation group. They then derive general linear
equivariant maps between such feature spaces and show that they are always given
by convolution. In Cohen et al. [11], this is further generalized to feature �elds that
are possibly only locally described as functions to a space of feature vectors, however
with the advantage that non-scalar �elds like vector �elds and tensor �elds become

84



5.5. Prior Theoretical Work

possible. It is important to study this in order to understand that it di�ers from our
work. Namely, they look at groups H which they assume to be locally compact and
unimodular. However, their H is not, as in our case, just the local structure group4,
but actually the global motion group, and thus also not assumed to be compact. Then,
they letH act on the homogeneous spaceH/Gwith respect to the stabilizer subgroup
G, which is also not assumed to be compact. For example, if one considers steerable
CNNs on Rn with structure group G = O(n), then H is the Euclidean motion group
E(n) and H/G would be Rn.
Additionally, for two consecutive layers, the homogeneous space and stabilizer sub-
group can change, so that there are two groups Gin and Gout. the groups have repre-
sentations ρin : Gin → AutK(Vin) and ρout : Gout → AutK(Vout), which corresponds
in the example above to the usual representations of O(n). For the general setting,
feature �elds then cannot globally be described as maps H/G → V . The reason is
that H/G may be twisted and thus its so-called feature bundle cannot necessarily be
“trivialized”5. Nevertheless, feature �elds can locally be described as mapsH/G→ V ,
though the authors give other characterizations as well.
Now, what the authors show is that, again, linear equivariant maps between feature
bundles are necessarily given by convolution with steerable kernels of a certain kind.
One characterization of the space of steerable kernels is the space of bi-Gin-Gout-
equivariant kernels of the following form:

HomGin×Gout(H,HomK(Vin, Vout))

:=
{
K : H → HomK(Vin, Vout) | K(gouthgin) = ρout(gout) ◦K(h) ◦ ρin(gin)

}
.

We consider it an interesting adventure to test whether the techniques developed in
our work would also allow one to come up with a solution for this kernel constraint.
We discuss this in Chapter 7.

4With “structure group” we mean what we call G in the body of this work.
5This seems, at �rst sight, to also be a problem for us, since our homogeneous space X can also

be topologically nontrivial, for example a sphere. The reason this is not an issue is that X is in
applications of steerable CNNs naturally embedded in Rn, and the feature bundle over this space
is trivial.
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In this chapter, we develop some relevant examples of the theory outlined in prior
chapters. All of these examples are applications of Theorem 4.1.15 and Corollary
4.1.16. These examples are concerned with the following question: Given a speci�c
�eld K ∈ {R,C}, compact transformation group G and homogeneous space X of G,
how can a basis of steerable kernels K : X → HomK(Vl, VJ) for given irreducible
representations ρl : G → U(Vl) and ρJ : G → U(VJ) be determined? The theorems
give an outline for what needs to be done in order to succeed in this task, and the steps
are always as follows:

1. For each l ∈ Ĝ, a representative for the isomorphism class of irreducible repre-
sentations l needs to be determined. That is, one needs to determine ρl : G →
U(Vl) and an orthonormal basis {Y n

l | n ∈ {1, . . . , [l]}}. We omit the index n if
there is only one basis element. Usually, we have Vl = K[l] and the orthonormal
basis is just the standard basis.

2. The Peter-Weyl Theorem 2.1.22 gives the existence-statement for a decompo-
sition of L2

K(X) into irreducible subrepresentations. We need an explicit such
decomposition, i.e.: we need to �nd multiplicities mj , irreducible subrepresen-
tations Vji ∼= Vj for i ∈ {1, . . . ,mj} and basis functions Y m

ji ∈ Vji ⊆ L2
K(X)

corresponding to the Y m
j such that L2

K(X) =
⊕̂

j∈Ĝ
⊕mj

i=1 Vji.

3. For each combination of j, l and J in Ĝ, one needs to �nd the number of times
[J(jl)] that VJ appears in a direct sum decomposition of Vj ⊗ Vl. Then, for
each s ∈ {1, . . . , [J(jl)]}, and for all basis-indices M,m and n, one needs to
determine the Clebsch-Gordan coe�cients 〈s, JM |jmln〉. We omit the index s
if VJ appears only once in the direct sum decomposition of Vj ⊗ Vl.

4. For each J one needs to determine a basis {cr | r ∈ R} of the space of endo-
morphisms of VJ , namely EndG,K(VJ).

Once all of this is done, one can then simply write down the basis kernels according to
Equation 4.4 or, in case that the space of endomorphisms is 1-dimensional, Equation
4.5. The ingredients determined above are purely representation-theoretic informa-
tion about the situation at hand, which hopefully makes the reader appreciate the re-
sults even more: We do not simply determine basis kernels. We understand in detail,
along the way, the representation theory of the group and homogeneous space.
Note that we are not concerned with practical considerations related to how �ne-
grained to do this in practice (for example if the space on which the kernels operate
splits into in�nitely many orbits). For such questions, we refer back to Remark 4.1.18.
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In the following sections, we discuss harmonic networks, SO(2)-equivariant CNNs
with real representations, re�ection-equivariant networks, SO(3)-equivariant CNNs
with both complex and real representations, and O(3)-equivariant CNNs with both
complex and real representations. For each of these examples, we go through the
four steps outlined above. We recommend looking at the �rst example in detail: we
conduct it in the greatest detail and it is the easiest to understand and thus serves as
a nice introduction.

6.1. Harmonic Networks
Here, we explain how the kernel constraint for harmonic networks [4] can be solved
using our theory. Let U(1) be the group of rotations of C = R2, i.e. the group of
elements inCwith length 1. This is also called the circle group since the group elements
lie on a circle. In the case of harmonic networks, we haveK = C, G = U(1), X = S1.
As in most examples that follow, we ignore the solution of the kernel constraint in the
origin, since it is usually easy to solve.
We now go through the four steps outlined above. Our statements about the repre-
sentation theory of the circle group can be found in Kowalski [15], chapter 5.

6.1.1. Construction of the Irreducible Representations of U(1)

We have Û(1) = Z, and for l ∈ Zwe can construct a representative ρl : U(1)→ U(Vl)
as follows: Vl = C is just the canonical 1-dimensional C-vector space, and ρl is given
by

[ρl(g)] (z) := gl · z,

where g is regarded as an element inC. One can easily check that this is an irreducible
representation. The orthonormal basis element for each such representation is just
given by 1 ∈ C = Vl. This already answers step 1 of the outline above.

6.1.2. The Peter-Weyl Theorem for L2
C(S

1)

For step 2, we need to determine the Peter-Weyl decomposition of L2
C(S

1), where
we regard S1 as a subset of C. Let Yl1 : S1 → C be given by Yl1(z) = z−l. Let
Vl1 ⊆ L2

C(S
1) just be given by its span: Vl1 = spanC(Yl1). We want to see that this is

a subrepresentation of L2
C(S

1). To see this, remember that the unitary representation
on L2

C(X) is given by λ : U(1)→ U(L2
C(S

1)) with [λ(g)ϕ] (z) = ϕ(g−1z). We have

[λ(g)Yl1] (z) = Yl1(g
−1z) = (g−1z)−l = gl · z−l =

(
gl · Yl1

)
(z) (6.1)

and thus λ(g)Yl1 = glYl1 ∈ Vl1, which is what we claimed. Since the Vl1 are 1-
dimensional, they are necessarily irreducible for dimension reasons. Now, an impor-
tant result from Fourier analysis is that the Yl1 for l ∈ Z actually form an orthonormal
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basis ofL2
C(S

1) and that, consequently, the Peter-Weyl decomposition ofL2
C(S

1) looks
as follows:

L2
C(S

1) =
⊕̂
l∈Z

Vl1.

From this we see that the multiplicities ml are all given by 1. What is missing is the
connection to the irreps ρl : U(1)→ U(Vl), but we have already indicated this in the
notation. Namely, the map fl : Vl → Vl1 given by z 7→ z ·Yl1 is clearly an isomorphism
of vector spaces, and due to Equation 6.1 even an isomorphism of representations:

fl
(
ρl(g)(z)

)
= fl

(
gl · z

)
= (gl · z) · Yl1
= z · (gl · Yl1)
= z · (λ(g)(Yl1))
= λ(g)

(
z · Yl1

)
= λ(g)

(
fl(z)

)
.

Thus, fl ◦ ρl(g) = λ(g) ◦ fl for all g ∈ U(1) and, as claimed, fl turns out to be an
isomorphism. This completely �nishes step 2 of the outline above.

6.1.3. The Clebsch-Gordan Decomposition
For step 3, we proceed as follows: The map

f : Vj ⊗ Vl → Vj+l, zj ⊗ zl 7→ zj · zl

is clearly well-de�ned and linear by the universal property of tensor products, see
De�nition 4.1.1. Furthermore, it is an isometry: namely, since the scalar product in
C is just the usual multiplication (with the left entry being complex conjugated), we
obtain 〈

f(zj ⊗ zl)
∣∣f(z′j ⊗ z′l)〉 = 〈zjzl∣∣z′jz′l〉

= zjzl · z′jz′l
= zjz

′
j · zlz′l

=
〈
zj
∣∣z′j〉 · 〈zl|z′l〉

=
〈
zj ⊗ zl

∣∣z′j ⊗ z′l〉 .
In the last step, we have used the de�nition of the scalar product on the tensor product,
De�nition 4.1.2. Thus, f is an isomorphism of Hilbert spaces. Finally, it also respects
the representations since

f
(
[(ρj ⊗ ρl)(g)] (zj ⊗ zl)

)
= f

(
[ρj(g)] (zj)⊗ [ρl(g)] (zl)

)
= f

(
gjzj ⊗ glzl

)
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= gjzj · glzl
= gj+l · (zjzl)
= [ρj+l(g)] (f(zj ⊗ zl))

and thus f ◦ (ρj ⊗ ρl)(g) = ρj+l(g) ◦ f for all g ∈ U(1). Finally, the basis vectors
correspond in the simplest possible way since f(1⊗ 1) = 1.
Overall, what we’ve shown is the following: VJ is a direct summand of Vj ⊗ Vl if and
only if J = j + l. If this is the case, we have [J(jl)] = 1 and can thus omit the index
s. The only Clebsch-Gordan coe�cient is then given by 〈J1|j1l1〉 = 1 since the basis
elements directly correspond.

6.1.4. Endomorphisms of VJ
This is the simplest part: Since we are considering representations over C, Schur’s
Lemma 4.1.8 tells us that EndU(1),C(VJ) is 1-dimensional for each irrep J , and thus we
can ignore the endomorphisms altogether.

6.1.5. Bringing Everything Together
We now show that a basis of steerable kernelsK : S1 → HomC(Vl, VJ) the groupU(1)
is given, when expressed as 1 × 1-matrix parameterized by S1, by the basis function
Yl−J : S1 → C. We remove the index “1” at the basis function to remove clutter. How
can we see this result, using Equation 4.5?
Note that VJ can only appear as a direct summand of Vj ⊗ Vl if j = J − l by what
we’ve shown above. The “matrix” of Clebsch-Gordan coe�cients CGJ((J−l)l) is then
just the number 1. We can omit the vacuous indices i and s and obtain that the only
basis kernel is given by

KJ−l(x) = 〈YJ−l|x〉 = YJ−l(x)

= x−(J−l)

= x−(l−J)

= Yl−J(x).

This result is precisely equal to the one obtained in the original paper [4]. This con-
cludes our investigations of harmonic networks.

6.2. SO(2)-Equivariant Kernels for Real
Representations

In this section, we look at the case K = R, G = SO(2) and X = S1. In the following
sections, we again step by step determine the representation-theoretic ingredients that
we need for the application of our theorem. We remark that the resulting kernels are
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not new, since Weiler and Cesa [9] have solved for this kernel basis already. However,
we want to emphasize again that with our method, we learn more about the repre-
sentation theory of SO(2) and thus get an overall better conceptual understanding of
how the kernels arise.
Since it will help the presentation of our results, we set SO(2) = R/2πZ, i.e. we view
SO(2) as a group of angles. We also set S1 = R/2πZ, that is we take the interval
[0, 2π] as the space where our functions are de�ned. Consequently, since we want
our Haar measure to be normalized, we have to put the fraction 1

2π
before all of our

integrals, di�erent from what we did in our treatment of SO(2) over C.
Note that since we now consider representations over the real numbers, unitary rep-
resentations become orthogonal and we write O(V ) instead of U(V ).

6.2.1. Construction of the Irreducible Representations of SO(2)

The irreps of SO(2) over R are given by ρl : SO(2)→ O(Vl), l ∈ N≥0. For l = 0, we
have V0 = R and the action is trivial. For l ≥ 1, Vl = R2 as a vector space. The action
is given by [

ρl(φ)
]
(v) =

(
cos(lφ) − sin(lφ)
sin(lφ) cos(lφ)

)
· v

for φ ∈ SO(2) = R/2πZ. The orthonormal basis is in both cases just given by stan-
dard basis vectors.

6.2.2. The Peter-Weyl Theorem for L2
R(S

1)

Now we look at square-integrable functions L2
R(S

1) that we now assume to take real
values. As before, SO(2) acts on this space by (λ(φ)f)(x) = f(x−φ)1. For notational
simplicity, we write cosl for the function that maps x to cos(lx), and analogously for
sinl. One then can show the following, which is a standard result in Fourier analysis:

Proposition 6.2.1. The functions cosl, sinl, l ≥ 1 span an irreducible invariant subspace
of L2

R(S
1) of dimension 2, explicitly given by

spanR(cosl, sinl) =
{
α cosl+β sinl | α, β ∈ R

}
which is isomorphic as an orthogonal representation to Vl by

√
2 cosl 7→

(
1
0

)
and

√
2 sinl 7→

(
0
1

)
2. Furthermore, sin0 = 0 and cos0 = 1 are constant functions and

their span is 1-dimensional and equivariantly isomorphic to V0 by cos0 7→ 1.
Finally, the functions

√
2 · cosl,

√
2 · sinl form an orthonormal basis of L2

R(S
1), i.e. every

function can be written uniquely as a (possibly in�nite) linear combination of these basis
functions.

1Note that we have a subtraction now instead of a multiplicative inversion. This is because we view
our group as additive.

2
√
2 acts as a normalization.
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When setting Vl1 = spanR(cosl, sinl), we thus obtain a decomposition

L2
R(S

1) =
⊕̂
l≥0

Vl1.

Thus, we have ml = 1 for all l ∈ N. All in all, we know everything there is to know
about the Peter-Weyl Theorem in our situation.

6.2.3. The Clebsch-Gordan Decomposition
We now do the explicit decomposition of Vj ⊗ Vl into irreps, which will give us the
Clebsch-Gordan coe�cients that we need. Instead of doing the decomposition in terms
of Vj and Vl themselves, in the proofs we actually use the isomorphic images Vj1 and
Vl1 inL2

R(S
1). For doing so, we �rst need some trigonometric formulas in our disposal:

Lemma 6.2.2. The sine and cosine functions ful�ll the following rules:

1. sinj+l = sinj cosl+cosj sinl.

2. cosj+l = cosj cosl− sinj sinl.

3. cosj cosl = 1
2
[cosj+l+cosj−l].

4. sinj cosl = 1
2
[sinj+l+sinj−l].

5. cosj sinl = 1
2
[sinj+l− sinj−l].

6. sinj sinl = 1
2
[cosj−l− cosj+l].

Proof. The �rst two are well-known and the last four follow directly from the �rst two
using sin−j = − sinj and cos−j = cosj where needed.

We will need the following general lemma:

Lemma 6.2.3. Let f : V → V ′ be an intertwiner between representations ρ : G →
AutK(V ) and ρ′ : G→ AutK(V

′). Then null(f) = {v ∈ V | f(v) = 0} is an invariant
linear subspace of V.

Proof. This can very easily be checked by the reader.

As a remark on notation for the following proposition: We write the Clebsch-Gordan
coe�cients CGJ(jl)s of irreps VJ , Vj and Vl with dimensions [J ], [j] and [l] as a [J ]×
([j] × [l])-tensor. That is, it consists of [J ] “rows”, each of which is a [j] × [l]-matrix.
If VJ appears only once in the tensor product, we omit the index s as before.

Proposition 6.2.4. We have the following decomposition results:

1. For j = l = 0 we have V0 ⊗ V0 ∼= V0 and Clebsch-Gordan coe�cients CG0(00) =([
1
])

.
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2. For j = 0, l > 0 we have V0 ⊗ Vl ∼= Vl and Clebsch-Gordan coe�cients CGl(0l) =([
1 0

][
0 1

]).
3. For j > 0, l = 0, we get Vj ⊗ V0 ∼= Vj and Clebsch-Gordan coe�cients CGj(j0) =

[
1

0

]
[
0

1

]
.

4. For j, l ≥ 0 and j 6= l we get Vj ⊗ Vl ∼= V|j−l| ⊕ Vj+l. The Clebsch-Gordan coe�-

cients are given by CG|j−l|(jl) =


[
1
2

0

0 1
2

]
[
0 −1

2
1
2

0

]
 and CGj+l,(jl) =


[
1
2

0

0 −1
2

]
[
0 1

2
1
2

0

]
.

5. For j = l > 0, we get an isomorphism Vl ⊗ Vl ∼= V2l ⊕ V 2
0 . We obtain the

Clebsch-Gordan coe�cients CG0(ll)1 =

([
1
2

0

0 1
2

])
, CG0(ll)2 =

([
0 −1

2
1
2

0

])
and

CG2l,(ll) =


[
1
2

0

0 −1
2

]
[
0 1

2
1
2

0

]
, the last one corresponding to the Clebsch-Gordan coef-

�cients CGj+l,(jl) from above. In CG0(ll)1 and CG0(ll)2, a fourth index is present,
namely 1 and 2, respectively. This is the index “s” that was missing in all the prior
examples, since this is the �rst time an irrep appears more than once in a tensor
product decomposition.

Proof. In the proof, instead of directly with the irreps ρj : SO(2) → O(Vj), we use
the isomorphic copies Vj1 in L2

R(S
1) given in Proposition 6.2.1. Since we think that it

does not help understanding to carry the index “1” in all computations, we omit this
index.
The proof of 1, 2 and 3 is clear.
For 4, consider the (unnormalized) basis {bcc, bcs, bsc, bss} of Vj⊗Vl, where for example
bcc = cosj ⊗ cosl. Our goal is to express these basis elements with respect to basis
elements of invariant subspaces. We do this by explicitly constructing an isomorphism
to a decomposition of irreps. To that end, let p : Vj ⊗ Vl → L2

R(S
1) be given by

f ⊗ g 7→ f · g, which is clearly a well-de�ned intertwiner. Let b′cc = p(bcc), and the
same for the other basis vectors. We get as image of p the set

im(p) = spanR
(
b′cc, b

′
cs, b

′
sc, b

′
ss

)
= spanR

(
cosj · cosl, cosj · sinl, sinj · cosl, sinj · sinl

)
,
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From Lemma 6.2.2 we obtain:

b′cc − b′ss = cosj+l, b
′
cs + b′sc = sinj+l, b

′
cc + b′ss = cosj−l, b

′
sc − b′cs = sinj−l .

Since these are linearly independent basis functions, we obtain:

im(p) = spanR
(
cosj+l, sinj+l, cosj−l, sinj−l

)
= Vj+l ⊕ V|j−l|.

Note for the last step that due to symmetry, cosj−l = cosl−j and sinj−l = − sinl−j .
Now we de�ne the following second set of (not necessarily orthonormal) basis-elements
in Vj ⊗ Vl, corresponding to the basis-elements V|j−l| ⊕ Vl+j by means of the isomor-
phism p:

c1 = bcc − bss, c2 = bcs + bsc, c3 = bcc + bss, c4 = bsc − bcs.

We obtain Vj⊗Vl = spanR(c1, c2)⊕ spanR(c3, c4)
∼= Vl+j⊕V|j−l|. From the following

equations we can read o� the Clebsch-Gordan coe�cients:

bcc =
1

2
[c1 + c3] , bcs =

1

2
[c2 − c4] , bsc =

1

2
[c2 + c4] , bss =

1

2
[c3 − c1] .

The result follows.
Now, we prove 5. We have j = l and still consider the same function p and overall
notation. Note that b′sc−b′cs = 0 and b′cc+b′ss = 1 are constant function. Then by what
was proven above, {c1, c2} spans a space isomorphic to V2l, c3 a space isomorphic to
the span of cos0, i.e. V0, and c4 spans the kernel, which is one-dimensional and also
an invariant subspace due to Lemma 6.2.3, and therefore it spans a space isomorphic
to V0 as well. Overall, we obtain

Vl ⊗ Vl = spanR(c1, c2)⊕ spanR(c3)⊕ spanR(c4)
∼= V2l ⊕ V 2

0 .

From this, we can as before read o� the Clebsch-Gordan coe�cients and obtain the
claimed result.

6.2.4. Endomorphisms of VJ
We now describe the endomorphisms of the irreducible representations, our last in-
gredient:

Proposition 6.2.5. We have EndSO(2),R(V0) ∼= R, i.e. multiplications with all real
numbers are valid endomorphisms of V0. For l ≥ 1, we get

EndSO(2),R(Vl) =

{(
a −b
b a

) ∣∣∣a, b ∈ R} ,
which is the set of all scaled rotations ofR2. When identifyingR2 ∼= C, we can also view
these transformations as arbitrary multiplications with a complex number.

As a consequence, idR is a basis for EndSO(2),R(V0) and
{(

1 0
0 1

)
,

(
0 −1
1 0

)}
a basis

for EndSO(2),R(Vl) for l ≥ 1.
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Proof Sketch. For l ≥ 1 and an arbitrary matrix E =

(
a b
c d

)
that commutes with all

rotation matrices ρl(φ), i.e. E ◦ρl(φ) = ρl(φ)◦E, one can easily show the constraints
a = d and b = −c, from which the result follows.

6.2.5. Bringing Everything Together
Now we have done all needed preparation and can solve the kernel constraint ex-
plicitly, using the matrix-form of the Wigner-Eckart Theorem for steerable kernels,
Theorem 4.1.15. This is, as mentioned before, a new derivation of the results in Weiler
and Cesa [9]. One can compare with table 8 in their appendix which only di�ers by
(irrelevant) constants.

Proposition 6.2.6. We consider steerable kernels K : S1 → HomR(Vl, VJ), where Vl
and VJ are irreducible representations of SO(2). Then the following holds:

1. For l = J = 0, we get K(x) = a ·
(
1
)
for every x ∈ S1 and an arbitrary real

number a ∈ R independent of x.

2. For l = 0, J > 0, a basis for steerable kernels is given by
(
cosJ
sinJ

)
and

(
− sinJ
cosJ

)
.

3. For l > 0 and J = 0, a basis for steerable kernels is given by
(
cosl sinl

)
,(

sinl − cosl
)
.

4. For l, J > 0, a basis for steerable kernels is given by the results stated in the proof.

Proof. The proof of 1 is clear.
For 2, note that VJ can only appear in Vj ⊗ V0 if j = J . The relevant Clebsch-Gordan

coe�cients are by Proposition 6.2.4 therefore CGJ(J0) =


[
1

0

]
[
0

1

]
. Furthermore, the

orthonormal basis of Vj1 = VJ1 is given by Proposition 6.2.1 up to constants by
{cosJ , sinJ}, which we have to write as a row-vector according to Theorem 4.1.15.
Thereby, we can ignore the complex conjugation since we work over the real num-
bers. Our �nal ingredient is the endomorphism basis of VJ , which is by Proposition

6.2.5 given by c1 = idR2 and c2 =
(
0 −1
1 0

)
. Overall, the basis kernels are given by

ci ·


[
cosJ sinJ

]
·
[
1

0

]
[
cosJ sinJ

]
·
[
0

1

]
 = ci ·

(
cosJ
sinJ

)
.
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The result follows.
For 3, we �nd V0 only in Vj ⊗ Vl if j = l, and even twice so. The relevant Clebsch-

Gordan coe�cients are therefore by Proposition 6.2.4 given by CG0(ll)1 =

([
1
2

0

0 1
2

])
and CG0(ll)2 =

([
0 −1

2
1
2

0

])
. The basis-functions in Vj1 = Vl1 are by Proposition 6.2.1

up to constants {cosl, sinl}, again written as a row-vector. Finally, VJ = V0 has only
idR as a basis-endomorphism by Proposition 6.2.5, so this can be ignored altogether
by Corollary 4.1.16. We obtain the following basis for steerable kernels:([

cosl sinl
] [1

2
0

0 1
2

])
=
(
1
2
cosl

1
2
sinl
)

([
cosl sinl

] [0 −1
2

1
2

0

])
=
(
1
2
sinl −1

2
cosl
)
.

For 4, we consider only the case l > J . The case l = J and l < 0 can be considered
analogously and leads by trigonometric formulae to the same result. By Proposition
6.2.4 we have

Vl−J ⊗ Vl ∼= VJ ⊕ V2l−J , Vl+J ⊗ Vl ∼= VJ ⊕ V2l+J ,

i.e. j = l − J and j = l + J leads to a tensor product decomposition containing VJ ,
but no other j does. Thus, the relevant Clebsch-Gordan coe�cients are by Proposi-
tion 6.2.4 the matrices CGJ(l−J,l) and CGJ(l+J,l), which are both equal and given by
[
1
2

0

0 1
2

]
[
0 −1

2
1
2

0

]
. For j = l − J and j = l + J , the basis functions of V(l−J)1 and V(l+J)1

are by Proposition 6.2.1 furthermore given by {cosJ−l, sinJ−l} and {cosl+J , sinl+J} re-
spectively. Finally, VJ has again the two basis endomorphisms c1 = idR1 and c2 from
above. Now, we do the computation for j = l− J , since for j = l+ J it is exactly the
same and obtain the following two basis kernels:

ci ·


[
cosl−J sinl−J

]
·
[
1
2

0

0 1
2

]
[
cosl−J sinl−J

]
·
[
0 −1

2
1
2

0

]
 = ci ·

(
1
2
cosl−J

1
2
sinl−J

1
2
sinl−J −1

2
cosl−J

)
.

Together with j = l + J , we get four basis kernels. This �nishes the derivation.

6.3. Z2-Equivariant Kernels for Real Representations
In this section, we discuss steerable CNNs that use the �nite group Z2, which we
identify with ({−1,+1}, ·), for their symmetries. We let this group act on the plane
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R2 by vertical re�ections, though other choices are possible as well:

x ·
(
a
b

)
=

(
xa
b

)
.

This example is very simple and one may see it as contrived to apply our relatively
heavy theory to it. We include it mainly as a demonstration that our results can also be
applied to non-smooth �nite groups as instances of compact groups. Furthermore, we
will fully recover the relationship to the original group convolutional CNNs from Co-
hen and Welling [2] and thereby demonstrate that all the di�erent developed theories
are consistent with each other.

6.3.1. The Irreducible Representations of Z2 over the Real
Numbers

Let ρ : Z2 → AutR(V ) be an irreducible real representation. Note that

ρ(−1) ◦ ρ(−1) = ρ((−1) · (−1)) = ρ(1) = idV ,

and thus ρ(−1) is an involution satisfying the equation ρ(−1)2 − idV = 0. It is well-
known from linear algebra that involutions are diagonalizable, and thus ρ(−1) leaves
1-dimensional subspaces invariant. By irreducibility of ρ this means that V itself needs
to be 1-dimensional. Consequently, we can assume V = R without loss of generality.
Note that the computations above mean that we have(

ρ(−1)− idR
)
◦
(
ρ(−1) + idR

)
= 0

and thus we need to have ρ(−1)−idR = 0 or ρ(−1)+idR = 0. It follows ρ(−1) = idR
or ρ(−1) = − idR. Overall, all these investigations mean that we have precisely two
irreducible representations of Z2 up to equivalence. We call them ρ+ : Z2 → O(V+)
and ρ− : Z2 → O(V−), where ρ+(−1) = idR and ρ−(−1) = − idR and V+ = V− = R.

6.3.2. The Peter-Weyl Theorem for L2
R(X)

Here we do the Peter-Weyl decomposition for L2
R(X), where X is one of the two

homogeneous spaces X = {−1, 1} and X = {0} with the obvious actions coming
from the groups Z2. This time, we also discuss orbits with only one point since we
later want to get a description of kernels on the whole of R2 for comparisons with
group convolutional CNNs.
We start with X = {−1, 1}. Note that the measure on X is just the normalized
counting measure, and thus all functions f : X → R are square-integrable. We
de�ne the two functions

f+ : X → R, f+(x) = 1 for all x ∈ X = {−1, 1},
f− : X → R, f−(x) = x for all x ∈ X = {−1, 1}.
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We then de�ne V+1 = spanR(f+) and V−1 = spanR(f−). This gives a decomposition

L2
R(X) = V+1 ⊕ V−1

since we have for all f ∈ L2
R(X)

f =
f(1) + f(−1)

2
· f+ +

f(1)− f(−1)
2

· f−.

Furthermore, the maps 1 7→ f+ and 1 7→ f− give isomorphisms of representations
V+ ∼= V+1 and V− ∼= V−1, respectively.
Now, assume that X = {0} with the trivial action coming from Z2. Then L2

R(X) =
V+1 generated from the function f+ : X → R, f+(0) = 1. As before, 1 7→ f+ gives an
isomorphism V+ ∼= V+1. This concludes the investigations of the Peter-Weyl Theorem.

6.3.3. The Clebsch-Gordan Decomposition
We have the following four isomorphisms of representations:

V+ ⊗ V+ ∼= V+, V+ ⊗ V− ∼= V−,

V− ⊗ V+ ∼= V−, V− ⊗ V− ∼= V+,

each time simply given by a ⊗ b 7→ ab. It can easily be checked that these are iso-
morphisms. In Section 6.6.3 the reader can �nd a proof for similar, sign-dependent
isomorphisms for the case that the group is O(3). For each such isomorphism, there
is precisely one Clebsch-Gordan coe�cient and it is just given by 1. Thus, as in the
case of harmonic networks in Section 6.1.5, we can just ignore the Clebsch-Gordan
coe�cients altogether in the �nal formulas for our basis kernels.

6.3.4. Endomorphisms of V+ and V−
Since V+ and V− are themselves only 1-dimensional, the endomorphism spaces are
necessarily 1-dimensional as well and just given by arbitrary 1 × 1-matrices, i.e. ar-
bitrary stretchings. As in the example of harmonic networks, we can therefore ignore
the endomorphisms as well.

6.3.5. Bringing Everything Together
Di�erent from the other examples, we will in this section not only engage with the
�nal steerable kernels on homogeneous spaces but also discuss how these assemble
to kernels de�ned on the whole plane R2. In the end, we will then also discuss how
kernels for the regular representation would look like.
But �rst, we engage with the homogeneous spaces. We start with X = {−1, 1} and
consider steerable kernels K : X → HomR(Vin, Vout) for irreducible Vin and Vout.
There are four possibilities for the input and output representations:
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Steerable Kernels K : X → HomR(V+, V+):

V+ can only be in a tensor product V ⊗ V+ if the sign of V is positive as well. Such
a space appears precisely once in L2

R(X) according to Section 6.3.2. Since endomor-
phisms and Clebsch-Gordan coe�cients do not appear by what we’ve shown before,
and since complex conjugation doesn’t do anything over the real numbers, a basis for
steerable kernels is just given by the one kernel K+ = f+ itself. Here, we identify
HomR(V+, V+) with R since it only consists of 1× 1-matrices.

Steerable Kernels K : X → HomR(V+, V−):

By the same arguments, a basis is given by the one kernel K− = f−.

Steerable Kernels K : X → HomR(V−, V+):

Again, a basis for steerable kernels is given by K− = f−.

Steerable Kernels K : X → HomR(V−, V−):

A basis is given by K+ = f+.
Finally, we also need to engage with the case that X = {0} consists only of a single
point. Similarly to above, in the “even” case that the signs of input- and output repre-
sentations agree, a basis is given by K+ = f+ with f+(0) = 1. If, however, the signs
do not agree, then only K = 0 ful�lls the constrained and the basis is empty.
Now, we assemble this to kernels on the whole of R2. We saw above that we only
need to distinguish two cases, namely (a) the case that the signs of input and output
representation agree and (b) that they do not.
For case (a), letK : R2 → R be a steerable kernel, whereR is isomorphic to the Hom-
space between equal-sign representations. R2 splits disjointly into orbits, namely{(a

b

)
,

(
−a
b

)}
for all a ∈ R≥0 and b ∈ R. If a = 0, then the orbit is just a single

point, which means that we have a vertical line of single-point orbits. The solution
above showed that on each orbit, the kernel needs to be constant (since f+ is constant)
and overall this just translates to

K

(
a
b

)
= K

(
−a
b

)
for all a ≥ 0 and b ∈ R. Consequently, K is just an arbitrary left-right symmetric
kernel.
In the case that the input- and output representations do not share their sign, by the
same arguments we see that K : R2 → R is an arbitrary left-right anti-symmetric

kernel which is zero on the vertical line
(
0
b

)
for arbitrary b ∈ R.

Other than these left-right restrictions, the kernel can be freely learned. Overall, this
means that we learn one “half” of the kernel and can recover the other half by the
symmetry property derived above.
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6.3.6. Group Convolutional CNNs for Z2

We now investigate what all this means if we consider regular representations instead
of irreducible representations, thus corresponding to group convolutional kernels as
in [2]. In this case, we will see an interesting “twist” in the kernel, which makes this
example more interesting than one might initially think. The twist emerges as follows:
For regular representations, we consider steerable kernels

K : R2 → HomR(L
2
R(Z2), L

2
R(Z2))

Now, there are two relatively canonical bases we can choose in the left and the right
space. We already know from above that {f+, f−} is the basis to choose if we want
to express steerable kernels corresponding to irreducible representations. However,
for vanilla group convolutional CNNs, the basis usually chosen is {e+1, e−1} where
e+1(x) = δ+1,x and e−1(x) = δ−1,x. We then obtain the following four base change
relations:

f+ = e+1 + e−1, f− = e+1 − e−1,

e+1 =
1

2
f+ +

1

2
f−, e−1 =

1

2
f+ −

1

2
f−.

Thus, the base change matrices are given by

B =

(
1 1
1 −1

)
, B−1 =

(
1
2

1
2

1
2
−1

2

)
.

Now, assume that K : R2 → HomR(L
2
R(Z2), L

2
R(Z2)) ∼= R2×2 is expressed with

respect to the basis {f+, f−}. If we write K as a matrix

K =

(
K11 K12

K21 K22

)
then we know thatK11 andK22 map between equal-sign representations andK12 and
K21 between unequal-sign representations. Consequently, from what we’ve found
above, K11 and K22 are symmetric, whereas K12 and K21 are antisymmetric. What
we now want to �gure out is how exactly this translates to a property of the kernel
expressed in the basis {e+, e−}.
Thus, letK ′ be this corresponding kernel. Then using the base change matrices above
we obtain(

K ′11 K ′12
K ′21 K ′22

)
= K ′

= B ·K ·B−1

=

(
1 1
1 −1

)
·
(
K11 K12

K21 K22

)
·
(

1
2

1
2

1
2
−1

2

)
=

(
1
2
[K11 +K12 +K21 +K22]

1
2
[K11 −K12 +K21 −K22]

1
2
[K11 +K12 −K21 −K22]

1
2
[K11 −K12 −K21 +K22]

)
.

99



6. Example Applications

What symmetry properties does this kernel obey? In order to understand this, we use

the following convention: for y ∈ R2 we set −y =

(
−y1
y2

)
, i.e. the vertically �ipped

image of y. Then we have, using the symmetry and anti-symmetry of the entries of
the original kernel K :

K ′22(−y) =
1

2

[
K11(−y)−K12(−y)−K21(−y) +K22(−y)

]
=

1

2

[
K11(y) +K12(y) +K21(y) +K22(y)

]
= K ′11(y),

K ′21(−y) =
1

2

[
K11(−y) +K12(−y)−K21(−y)−K22(−y)

]
=

1

2

[
K11(y)−K12(y) +K21(y)−K22(y)

]
= K ′12(y).

Thus the second row of K ′ is basically the same as the �rst, only that the kernels
swap with each other and are internally �ipped. This is a special case of the outcome
in Cohen and Welling [2], which is also described rather clearly in Weiler et al. [24]:
in group convolutional kernels which are steerable with respect to �nite groups, the
kernels get copied and applied in all orientations demanded by the group.
What we would still like to understand is if we can also reverse the direction: That
is, assume that we start with a group convolutional kernel K ′ of which we know
that K22′(−y) = K ′11(y) and K ′21(−y) = K ′12(y) for all y ∈ R2. If we then do a
base change, we would like to know if the resulting kernel consists of symmetric and
antisymmetric entries. Namely, set

(
K11 K12

K21 K22

)
= K

= B−1 ·K ′ ·B

=

(
1
2

1
2

1
2
−1

2

)
·
(
K ′11 K ′12
K ′21 K ′22

)
·
(
1 1
1 −1

)
=

(
1
2
[K ′11 +K ′12 +K ′21 +K ′22]

1
2
[K ′11 −K ′12 +K ′21 −K ′22]

1
2
[K ′11 +K ′12 −K ′21 −K ′22] 1

2
[K ′11 −K ′12 −K ′21 +K ′22]

)
.

The reader can easily check that we can deduce that K11 and K22 are symmetric and
that K12 and K21 are anti-symmetric. We have thus fully shown the equivalence of
the kernel solutions in the setting of steerable CNNs compared to the setting of group
convolutional CNNs for the speci�c group Z2.
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6.4. SO(3)-Equivariant Kernels for Complex
Representations.

In the �rst two sections, we have discussed U(1) ∼= SO(2)-equivariant kernels (i.e.,
SE(2)-equivariant neural networks) both over C and R. The situation over R was
considerably more complicated and required new arguments. In this section, we will
discuss SO(3)-equivariant kernels (i.e. SE(3)-equivariant neural networks) for com-
plex representations. In Section 6.5 we will then look at the real case, which will
essentially give the exact same results, thus di�ering somewhat from the considera-
tions about U(1) ∼= SO(2). Di�erent from the earlier sections, we will from now on
be less explicit and care more about the general properties of the di�erent functions
and coe�cients we consider. SO(3)-equivariant networks with real coe�cients have
before been implemented in Weiler et al. [8] and Thomas et al. [6], among others.

6.4.1. The Irreducible Representations of SO(3) over the
Complex Numbers

In this section, we state the complex irreducible representations of SO(3). We will
not state the matrices explicitly since the matrix elements are considerably more com-
plicated than in the earlier examples that we saw. For each l ∈ N≥0, there is one
irreducible unitary representation

Dl : SO(3)→ U(Vl), where Vl = C2l+1.

The matrices Dl(g) for g ∈ SO(3) are called the Wigner D-matrices3. There are, up to
equivalence, no other irreducible representations of SO(3) over C. A reference for all
this is the original work Wigner [37].
We note that the indices for the dimensions in C2l+1 are −l,−l + 1, . . . , l − 1, l by
general convention.

6.4.2. The Peter-Weyl Theorem for L2
C(S

2) as a Representation
of SO(3)

Here, we describe howL2
C(S

2), considered as a unitary representation viaλ : SO(3)→
U(L2

C(S
2)), with [λ(g)ϕ](x) = ϕ(g−1x), contains densely a direct sum of irreducible

representations. For doing so, we proceed by �rst describing spherical harmonics
without formulas and stating their orthonormality properties, and then stating how
they transform under rotation. This will then yield the result. Note that we do not
need to describe explicit formulas for the spherical harmonics, which are again some-
what complicated since we are more interested in their properties in relation to Hilbert
space theory and representation theory. A reference for all this is MacRobert [38].
The spherical harmonics are continuous functions Y n

l : S2 → C for l ∈ N≥0 and
n = −l, . . . , l. Thus, they are elements ofL2

C(S
2). They have the following properties:

3Here, the letter “D” stands for “Darstellung” which is the German term for “representation”.

101



6. Example Applications

1.
〈
Y n
l

∣∣Y n′

l′

〉
= δll′δnn′ for all l, l′, n, n′.

2. The linear span of the spherical harmonics is dense in L2
C(S

2).

3. They transform as follows under rotation: λ(g)(Y n
l ) =

∑l
n′=−lD

n′n
l (g)Y n′

l ,
where Dn′n

l (g) are the matrix elements of the Wigner D-matrices de�ned in
Section 6.4.1.

Properties 1 and 2 together imply that the spherical harmonics form an orthonormal
basis of L2

C(S
2), see De�nition A.2.9. Let

Vl1 := spanC(Y
n
l | n = −l, . . . , l).

Then we already obtain L2
C(S

2) =
⊕̂

l≥0Vl1. Now, let en ∈ C2l+1 be the n’th standard
basis vector, for n = −l, . . . , l. Then property 3 means that the linear map given on
basis vectors by

f : Vl → Vl1, e
n 7→ Y n

l

is an isomorphism of unitary representations. More precisely, f is clearly a unitary
transformation and a linear isomorphism, and it is furthermore equivariant on basis
vectors since

f (Dl(g)(e
n)) = f

(∑l

n′=−l
Dn′n
l (g)en

′
)

=
∑l

n′=−l
Dn′n
l (g)f(en

′
)

=
∑l

n′=−l
Dn′n
l (g)Y n′

l

= λ(g)(Y n
l )

= λ(g)(f(en)).

(6.2)

General equivariance then follows from equivariance on basis vectors. This concludes
this section.

6.4.3. The Clebsch-Gordan Decomposition

Explicit formulas for the Clebsch-Gordan coe�cients of SO(3) are given in Bohm and
Loewe [39]. The most important fact is the following: There is a decomposition

Vj ⊗ Vl ∼=
l+j⊕

J=|l−j|

VJ

of representations. Furthermore, the Clebsch-Gordan coe�cients 〈JM |jmln〉 are all
real numbers, a fact that we will use in Section 6.5.
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6.4.4. Endomorphisms of VJ
As in the case of harmonic networks, this is again very simple: we are considering
representations over C, and so Schur’s Lemma 4.1.8 tells us that EndSO(3)(VJ) is 1-
dimensional for each irrep J . We can therefore ignore the endomorphisms once again.

6.4.5. Bringing Everything Together
Now, with all this prior work, let us determine the equivariant kernels K : S2 →
HomC(Vl, VJ) for the irreducible representations Dl : SO(3) → U(Vl) and DJ :
SO(3) → U(VJ). For this, we use Equation 4.5. Since each Vj appears only once
in the direct sum decomposition of L2

C(S
2) according to Section 6.4.2 and since VJ can

only appear once in the direct sum decomposition of a tensor product Vj ⊗ Vl accord-
ing to Section 6.4.3 , we do not need the indices i and s. Furthermore, as mentioned in
the last section, the endomorphisms are trivial, which is why we also do not need the
index r. Overall, we see that we simply have basis kernels Kj : S

2 → HomC(Vl, VJ)
for all j with |l − J | ≤ j ≤ l + J4. They are explicitly given by

Kj(x) =

〈Yj|x〉 · CG
1
J(jl)

...
〈Yj|x〉 · CG[J ]

J(jl)


for all x ∈ S2. Remembering that

〈
Y m
j

∣∣x〉 = Y m
j (x), the individual matrix elements

of Kj(x) are then given by

〈JM |Kj(x)|ln〉 =
j∑

m=−j

〈JM |jmln〉 · Y m
j (x).

This ends the discussion.

6.5. SO(3)-Equivariant Kernels for Real
Representations

In this section, we want to argue why the results in the last section transfer over to the
real case as well. Most of the investigations in this section are probably well-known.
However, we were not able to �nd sources that explicitly explain the representation
theory of SO(3) over the real numbers, and so we develop lots of it here from scratch.
We thereby make use of the theory over C, some results about real spherical harmon-
ics, and the general theory of real and quaternionic representations outlined in Bröcker
and Dieck [40]. We need to somewhat turn the order around in this section in order

4We saw that VJ is a direct summand of Vj ⊗ Vl if and only if |l − j| ≤ J ≤ l + j. By doing case
distinctions, one can show that this is the case if and only if |l − J | ≤ j ≤ l + J .
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to develop the results. Therefore we �rst investigate the Peter-Weyl Theorem, then
look at the endomorphism spaces of the appearing irreducible representations and
afterward, as a consequence, show that the representations appearing in the decom-
position of L2

R(S
2) are already exhaustive.

6.5.1. The Peter-Weyl Theorem for L2
R(S

2) as a Representation
of SO(3)

The most important �nding is the following, which is taken from Gallier and Quain-
tance [41]: One can do a base change for the spherical harmonics as follows to obtain
real versions of them. Namely, let

rY n
l =


i√
2

(
Y n
l − (−1)n Y −nl

)
if n < 0,

Y 0
l if n = 0,
1√
2

(
Y −nl + (−1)n Y n

l

)
if n > 0.

(6.3)

One can then show that these functions are real-valued continuous functions and
therefore rY n

l ∈ L2
R(S

2). Furthermore, they are an orthonormal basis of this space.
We can then, as before, set rVl1 as the span of the rY n

l ∈ L2
R(S

2) and obtain a decom-
position

L2
R(S

2) =
⊕̂

l≥0
rVl1.

We need to understand the transformation properties of these real-valued spherical
harmonics under rotation. To understand this explicitly, we set Bl ∈ C(2l+1)×(2l+1) as
the (complex) base change matrix between the complex and real spherical harmonics.
Its entries are given according to Equation 6.3 such that the following relation holds
for all n = −l, . . . , l:

rY n
l =

l∑
n′=−l

Bn′n
l · Y n′

l .

Since for a given l, both the complex and real spherical harmonics are linearly inde-
pendent, the matrixBl is invertible. LetB−1l be its inverse. Then it is generally known
from linear algebra that we also obtain the inverse relation:

Y n
l =

l∑
n′=−l

(B−1l )n
′n · rY n′

l .

Using both these relations and the rotation properties of the complex spherical har-
monics from Section 6.4.2 we obtain the following rotation property for the real spher-
ical harmonics:

λ(g)(rY n
l ) =

l∑
n1=−l

Bn1n
l · λ(g)(Y n1

l )
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=
l∑

n1=−l

Bn1n
l

l∑
n2=−l

Dn2n1
l (g) · Y n2

l

=
l∑

n1=−l

Bn1n
l

l∑
n2=−l

Dn2n1
l (g) ·

l∑
n′=−l

(B−1l )n
′n2 · rY n′

l

=
l∑

n′=−l

(
l∑

n1=−l

l∑
n2=−l

(B−1l )n
′n2 ·Dn2n1

l (g) ·Bn1n
l

)
rY n′

l

=
l∑

n′=−l

(
B−1l ·Dl(g) ·Bl

)n′n · rY n′

l .

Now if we set Dl(g)
r := B−1l ·Dl(g) ·Bl, then we obtain the transformation property

λ(g)(rY n
l ) =

l∑
n′=−l

Dl(g)
r n′n · rY n′

l (6.4)

which is analogous to the one in Section 6.4.2.

Lemma 6.5.1. Dl(g)
r n′n ∈ R for all l ≥ 0, n′, n = −l, . . . , l and g ∈ SO(3).

Proof. Note that since rY n
l is a real-valued function, the rotation λ(g)(rY n

l ) is real-
valued as well. Thus, it is in the space L2

R(S
2). The real spherical harmonics are a

basis of this space, which means that the coe�cients when expanding λ(g)(rY n
l ) in

this basis are necessarily real as well. These coe�cients are precisely given by the
Dl(g)
r n′n according to Equation 6.4.

Now, we have the choice to view Dr l as either a real or a complex representation,
but �rst we take the complex viewpoint and see it as a function Dr l : SO(3) →
AutC(C

2l+1). Notationwise, the following is important: the “r” in Dr l indicates that
the elements in this matrix are real but does not tell us on which space it acts. This
will always be clari�ed by the context. We have the following:

Lemma 6.5.2. Dr l : SO(3) → U(C2l+1) is an irreducible unitary representation and
isomorphic to Dl.

Proof. First of all, it is an actual linear representation since

Dl(gg
′)r = B−1l Dl(gg

′)Bl = B−1l Dl(g)BlB
−1
l Dl(g

′)Bl = Dl(g)
r · Dl(g

′)r

where we used that Dl is a linear representation. Now since Y n
l and rY n

l are both
orthonormal bases of L2

C(S
2), the base change matrixBl needs to be a unitary matrix.

Consequently, Dl(g)
r = B−1l Dl(g)Bl is as a product of unitary transformations itself

unitary, which means that Dr l is a unitary representation. Furthermore, we obtain
Bl · Dl(g)

r = Dl(g) · Bl, which means that Bl gives an isomorphism Dr l
∼= Dl of

unitary representations. From the fact that Dl is irreducible, we obtain that Dr l is
irreducible as well.
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Now we take the real viewpoint. Let rVl = R2l+1.

Lemma 6.5.3. Dr l : SO(3)→ O(rVl) is an irreducible orthogonal representation.

Proof. Dl(g)
r is a unitary matrix for each g ∈ SO(3) by Lemma 6.5.2, and since its

matrix elements are real by Lemma 6.5.1, it automatically is an orthogonal matrix. If
it was reducible, then there would be a real base change matrix that brings Dr l in a
nontrivial blog-diagonal shape. However, this base change would in particular be com-
plex, meaning that we would conclude that the complex version of the representation
Dr l is reducible. But it is not, due to Lemma 6.5.2.

Now, remember that L2
R(S

2) =
⊕̂

l≥0
rVl1 and that rVl1 is generated from the real

spherical harmonics. Also, remember that the real spherical harmonics transform as in
Equation 6.4. Thus, with the same arguments as in Equation 6.2 we obtain rVl1 ∼= rVl,
which is from the preceding lemmas an irreducible orthogonal representation. Thus,
we have found the Peter-Weyl decomposition of L2

R(S
2).

6.5.2. Endomorphisms of rVJ
In the next section, we will show that the Dr J : SO(3) → O(rVJ) already given
an exhaustive list of the irreducible representations of SO(3) over the real numbers.
In this section, we �rst describe their endomorphism spaces since this will help in
showing that there cannot be any other irreducible representations. Fortunately, the
situation is again very simple:

Proposition 6.5.4. EndSO(3),R(
rVJ) is one-dimensional for each J ≥ 0.

Proof. Let f : rVJ → rVJ be an endomorphism. Since rVJ = R2J+1 we can view f as
a matrix in R(2J+1)×(2J+1). That f is an endomorphism then means

f · DJ(g)
r = DJ(g)

r · f

for all g ∈ SO(3). Now note that as a real matrix, f is in particular a complex matrix,
i.e. f ∈ C(2J+1)×(2J+1). Also, remember that we can view Dr J also as a complex
irreducible representation Dr J : SO(3) → U(C2J+1) by Lemma 6.5.2. What this
means is that f ∈ EndSO(3),C(C

2J+1), which is isomorphic to C by Schur’s Lemma
4.1.8. Thus, f is a complex multiple of the identity. Since f is a real matrix, it is thus
a real multiple of the identity. The result follows.

6.5.3. General Notes on the Relation between Real and
Complex Representations

In the next section we show that there can, up to isomorphism, not be other irreducible
representations than the Dr l : SO(3) → O(rVl). In order to do so, we �rst need
to better understand the relationship between real and complex representations of
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compact groups. These investigations will carry over to the investigations for O(3)
that we do in Section 6.6 as well.
The following de�nition of a classi�cation of real irreducible representations of a com-
pact group G can be found in Bröcker and Dieck [40], Theorem II.6.7. In this book, it
is a theorem, since the authors give an independent but equivalent de�nition of these
notions.

De�nition 6.5.5 (Real type, complex type and quaternionic type irreducible represen-
tations). Let ρ : G → O(V ) be a real irreducible representation of a compact group
G. Then ρ is said to be of

1. real type if EndG,R(V ) ∼= R,

2. complex type if EndG,R(V ) ∼= C and

3. quaternionic type if EndG,R(V ) ∼= H, where H are the quaternions.

Here, these isomorphisms respect both addition and multiplication. The multiplication
in the endomorphism spaces is thereby given by composition of functions.

Furthermore, Bröcker and Dieck [40] shows in Theorem II.6.3 that there is no other
possibility for an irreducible real representation, i.e. they can be completely catego-
rized by being of real, complex or quaternionic type. Additionally, since R, C and H
already di�er in their R-dimension, it is enough to check whether the R-dimension
of an endomorphism space is 1, 2 or 4 in order to do the classi�cation.
In order to compare real and complex representations we need to de�ne two functors
between those5:

De�nition 6.5.6 (Restriction and Extension). Let cρ : G → AutC(
cV ) be a complex

representation. Furthermore, let rρ : G → AutR(
rV ) be a real representation. Then

we de�ne their restriction and extension as follows:

1. Set r(cV ) as the R-vector space that has the same underlying abelian group as
cV and the scalar multiplication from R which is the restriction of the multi-
plication from C. The restriction r(cρ) : G → AutR(r(

cV )) is de�ned as the
exact same map as cρ, only that r(cρ)(g) : r(cV )→ r(cV ) is now viewed as an
automorphism of real vector spaces.

2. We de�ne the extension by e(rV ) := C ⊗R rV , where C is regarded as an R-
vector space. This construction becomes a C-vector space by scalar multiplica-
tion z · (z′ ⊗ v) := (zz′)⊗ v. We can then de�ne e(rρ) : G→ AutC(e(

rV )) by
setting e(rρ)(g) := idC⊗(rρ(g)).

5We only de�ne these functors on objects and not on morphisms. The reason is that we will never
explicitly use their de�nitions on morphisms. More details on this can be found in Bröcker and
Dieck [40], including other functors which are needed in the general theory. The reader should not
worry if he or she does not know what a functor is.
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Note that the extension operation doubles the R-dimension, whereas for the restric-
tion it stays equal. Therefore, we can not hope that these operations are inverse to
each other. However, we have the following, almost as nice statement:

Proposition 6.5.7. For each real representation ρ : G → AutR(V ) there is a natural
isomorphism r(e(V )) ∼= V ⊕ V of R-representations.

Proof. This is the �rst statement in Bröcker and Dieck [40], Proposition II.6.1.

The following de�nition is actually not the de�nition that Bröcker and Dieck [40] for-
mulate. However, it is an equivalent characterization that follows from their Proposi-
tion II.6.6 (vii), (viii) and (ix) and is more convenient for our needs:

De�nition 6.5.8 (Real type complex representation). Let ρ : G→ AutC(V ) be a com-
plex irreducible representation. Then ρ is called of real type if there is an isomorphism
of real representations r(V ) ∼= U ⊕ U where

1. ρU : G→ AutR(U) is an irreducible real representation and

2. r(ρ) : G→ AutR(r(V )) is the restriction of ρ, as de�ned in De�nition 6.5.6.

Proposition 6.5.9. AssumeG is a compact group such that all complex irreducible rep-
resentations are of real type. Then also all real irreducible representations are of real
type.

Proof. This follows from Bröcker and Dieck [40], Proposition II.6.6 (ii) and (iii).

Proposition 6.5.10. Let ρ : G → AutR(V ) be an irreducible real representation of
real type. Then its extension e(ρ) : G → AutC(e(V )) given as in De�nition 6.5.6 is an
irreducible complex representation (also of real type).

Proof. This is precisely Bröcker and Dieck [40], Proposition II.6.6(i).

6.5.4. The Irreducible Representations of SO(3) over the Real
Numbers

The rough strategy is to use the fact that the Dr l, viewed as complex irreducible repre-
sentations, are an exhaustive list of all the complex irreps. Then, using the restriction
and extension operators r and e between real and complex representations, we can
show that in the speci�c case of SO(3), there can not be any other real irreducible
representations than the Dr l, viewed as real representations.

Lemma 6.5.11. All complex irreducible representations of SO(3) are of real type.

Proof. From Section 6.4.1 and Lemma 6.5.2 we know that the Dr l : SO(3)→ U(C2l+1)
give us, up to equivalence, all the complex irreducible representations of SO(3). Ac-
cording to De�nition 6.5.8 we now need to understand that its restriction splits into
the direct sum of twice the same irreducible real representation. We do this as follows:
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We can write r(C2l+1) = R2l+1 ⊕ (iR)2l+1 = rVl ⊕ irVl, which is a decomposition of
C2l+1 when viewed as an R-vector space. Then, we can note that both

Dr l : SO(3)→ O(rVl) and
Dr l : SO(3)→ O(irVl)

are well-de�ned R-representations, which follows from the fact that the matrix ele-
ments are all real. Furthermore, the �rst map is actually an irreducible real represen-
tation by Lemma 6.5.3. The second one is isomorphic to the �rst since one can show
that

i : rVl → irVl, a 7→ i · a

is an isomorphism of real SO(3)-representations. This gives us precisely the splitting
of r(C2l+1) as a representation that we were looking for.

Corollary 6.5.12. All irreducible real representations of SO(3) are of real type.

Proof. This follows directly from Lemma 6.5.11 and Proposition 6.5.9.

Proposition 6.5.13. The Dr l : SO(3) → O(rVl) are, up to equivalence, all real irre-
ducible representations of SO(3).

Proof. Assume that ρ : SO(3) → AutR(V ) is an irreducible real representation of
SO(3). It is of real type by Corollary 6.5.12. By Proposition 6.5.10, the extension
e(ρ) : G → AutC(e(V )) is an irreducible complex representation. Since the Dr l

give us all complex irreducible representations up to equivalence by Section 6.4.1 and
Lemma 6.5.2, there is an equivalence of complex SO(3)-representations e(V ) ∼= C2l+1

for some l. Since functors respect isomorphisms (and equivalences are isomorphisms
in the categories of G-representations) and the restriction operation is a functor6, and
using Proposition 6.5.7 as well as the proof of Lemma 6.5.11 we obtain:

V ⊕ V ∼= r(e(V )) ∼= r(C2l+1) ∼= rVl ⊕ irVl = rVl ⊕ rVl.

Using the Krull-Remak-Schmidt Theorem 2.2.16, we see that there is an isomorphism
of SO(3)-representations V ∼= rVl. This �nishes the proof.

6.5.5. The Clebsch-Gordan Decomposition
We are almost there. The only thing left to understand is the Clebsch-Gordan de-
composition. Remember the following from Section 6.4.3: For the complex irreducible
representations there are decompositions

Vj ⊗ Vl ∼=
l+j⊕

J=|l−j|

VJ

6The reader does not need to know what a functor is if he or she believes these statements.
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where on each space, the representations Dj , Dl and DJ are given by the Wigner D-
matrices. Furthermore, the Clebsch-Gordan coe�cients are all real. Now, we know
that Dr l is, as a complex representation, isomorphic to Dl by Lemma 6.5.2, and such
a representation then acts on C2l+1 as well. Consequently, we also get the decompo-
sition

C2j+1 ⊗ C2l+1 ∼=
l+j⊕

J=|l−j|

C2J+1

of the complex representations Dr j and Dr l. Obviously, the Clebsch-Gordan coe�-
cients can be chosen to be exactly the same as before, and thus they are again real.
Let the above isomorphism be called f . Now, we can view all involved vector spaces as
R-vector spaces as well. Furthermore, we have subspaces rVj = R2j+1, rVl = R2l+1

and rVJ = R2J+1 which are also invariant under the representations Dr j , Dr l and
Dr J . Consequently, we can just restrict the isomorphism above to a map

f | : rVj ⊗ rVl →
l+j⊕

J=|l−j|

rVJ .

which is well-de�ned since the Clebsch-Gordan coe�cients are real. It needs to be in-
jective, since it is a restriction of an isomorphism. For dimension reasons, the restric-
tion then needs to be an isomorphism, and obviously, it has the exact same Clebsch-
Gordan coe�cients as the original map f 7.

6.5.6. Bringing Everything Together
By what we’ve shown in the last sections, we see that the situation is basically the
same as in Section 6.4.5. The only thing that changes is that we now use the real
spherical harmonics, and therefore the complex conjugation disappears. What this
overall means is the following: let Dr l : SO(3) → O(rVl) and Dr J : SO(3) →
O(rVJ) be the representations determining the input and output �elds. Then a basis
for steerable kernels K : S2 → HomR(

rVl,
rVJ) is given by kernels Kj : S2 →

HomR(
rVl,

rVJ) for all |l − J | ≤ j ≤ l + J . The matrix elements are given by

〈JM |Kj(x)|ln〉 =
j∑

m=−j

〈JM |jmln〉 · rY m
j (x). (6.5)

6.6. O(3)-Equivariant Kernels for Complex
Representations

In this section, we deal with O(3)-equivariant kernels for complex representations
and then, in the next section, will transport the results over to real representations.

7The reason for this is that the standard basis vectors in Ck which are used for the Clebsch-Gordan
coe�cients are exactly the standard basis vectors in Rk ⊆ Ck by de�nition of this embedding.
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In the earlier examples, we saw that the Peter-Weyl decomposition of L2
K(X) always

contained each irreducible representation of the symmetry group exactly once. The
example of O(3) is the �rst in which this is not the case: parity will play a role in
determining which irreducible representations make their way in the space of square-
integrable functions and which do not. Overall, we hope that the example of O(3) is a
su�cient justi�cation for our use of the multiplicitiesmj of irreducible representations
that we considered in all our theorems. O(3)-equivariant networks are to the best of
our knowledge not described in any published work yet.

6.6.1. The Irreducible Representations of O(3)

The most important observation is the following, after which we can deduce the irre-
ducible representations of O(3) from those of SO(3):

Lemma 6.6.1. Let Z2 := ({−1,+1}, ·) be the group with two elements. Then the map

· : Z2 × SO(3)→ O(3), (s, g) 7→ sg

is an isomorphism of groups.

Proof. It is a group homomorphism since s ∈ {−1,+1} can be represented by a mul-
tiple of the identity matrix, and as such it commutes with every matrix g. That · is an
isomorphism follows since all matrices in O(3) either have determinant 1 or −1. The
matrices with determinant 1 form SO(3) and are the image of {+1} × SO(3). The
matrices with determinant −1 are the image of {−1} × SO(3).

Note the fact that for g ∈ SO(3),−g has determinant−1, which we used in the proof.
This does only hold for g ∈ SO(n) with n being odd. Therefore, the above lemma is
not true for n even. In the even case, we obtain a semidirect product and the story
complicates somewhat.
Earlier, we already considered tensor product representations of one and the same
group. A related notion is that of tensor product representations of two di�erent
groups8:

De�nition 6.6.2 (Tensor product representation). LetG andH be two compact groups.
Let ρG : G → AutK(VG) and ρH : H → AutK(VH) be representations of the two
groups G and H . Then the tensor product representation is given by

ρG ⊗ ρH : G×H → AutK(VG ⊗ VH),[
(ρG ⊗ ρH) (g, h)

]
(vG ⊗ vH) := ρG(g)(vG)⊗ ρH(h)(vH).

This is again a linear representation.

Proposition 6.6.3. Representatives of isomorphism classes of irreducible representations
of G × H are given precisely by all the ρG ⊗ ρH , where ρG and ρH run through repre-
sentatives of isomorphism classes of irreducible representations ofG andH , respectively.

8It is not a direct generalization due to the presence of two di�erent group elements being applied.
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Proof. This is proven in chapter II, Proposition 4.14 and 4.15 of Bröcker and Dieck
[40].

It is important to note that the proof of the above proposition uses the property of
the complex numbers to be algebraically closed in crucial steps, and therefore it is
unclear how exactly a generalization to representations over the real numbers looks
like. Therefore, we will not use the above proposition in our later considerations for
real representations of O(3).
However, in our current situation, we can apply it without problems. This proposition,
together with Lemma 6.6.1, suggests that we should understand the irreducible repre-
sentations of Z2. We already saw this for real representations before and essentially
obtain the same result:

Lemma 6.6.4. The irreducible representations of Z2 are up to equivalence precisely the
following two, which we state for simplicity only on the generator:

ρ+ : Z2 → AutC(C), ρ+(−1) = idC

ρ− : Z2 → AutC(C), ρ−(−1) = − idC .

Proof. This can be shown in exactly the same way as in Section 6.3.1.

Thus we are ready to state our result about the irreducible representations of O(3):

Proposition 6.6.5. The irreducible representations of O(3) are up to equivalence given
as follows: for each l ∈ N≥0 there are precisely two representations Dl+ : O(3) →
U(Vl+) and Dl− : O(3)→ U(Vl−) with Vl+ = C2l+1 = Vl−, given as follows:

Dl+(sg) = Dl(g) for all s ∈ Z2, g ∈ SO(3).

Dl−(sg) = sDl(g) for all s ∈ Z2, g ∈ SO(3).

Proof. Remember from Section 6.4.1 that the irreducible representations of SO(3) are
given by the Wigner D-matrices Dl. From Lemma 6.6.4 we know that the irreducible
representations of Z2 are given by ρ+ and ρ−. From the isomorphism O(3) ∼= Z2 ×
SO(3) from Lemma 6.6.1 and from Proposition 6.6.3 we thus obtain that the irreducible
representations of O(3) are precisely given by all ρ+⊗Dl and ρ−⊗Dl. We now show
that ρ− ⊗Dl is equivalent to Dl−: We have

ρ− ⊗Dl : O(3)→ AutC(C⊗ Vl),
[
(ρ− ⊗Dl)(sg)

]
(z ⊗ v) = sz ⊗ [Dl(g)] (v).

Now, consider the linear isomorphism f : C ⊗ Vl → Vl+, z ⊗ v 7→ zv. We only need
to check that it is equivariant and are then done:

f
(
[(ρ− ⊗Dl)(sg)] (z ⊗ v)

)
= f

(
sz ⊗ [Dl(g)](v)

)
= sz · [Dl(g)] (v)

= [sDl(g)](zv)

= [Dl−(sg)](f(z ⊗ v)).

The statement about Dl+ can be shown using the exact same map f .
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6.6.2. The Peter-Weyl Theorem for L2
C(S

2) as Representation of
O(3)

The considerations in this section follow almost entirely from Section 6.4.2. There we
saw that, as a representation over SO(3), we have a decomposition

L2
C(S

2) =
⊕̂
l≥0

Vl1

with the spaces Vl1 being spanned by the spherical harmonics Y n
l , n = −l, . . . , l.

We immediately see that in L2
C(S

2), viewed as a representation over O(3), there is not
enough space for all the irreducible representations, since they appear in pairs as shown
in Proposition 6.6.59. Thus, we need to �gure out which irreducible representations
are present and which are not. The core of this question is answered by the following
proposition:

Lemma 6.6.6 (Parity in spherical harmonics). The spherical harmonics obey the fol-
lowing parity rules:

Y n
l (sx) = sl · Y n

l (x)

for all l ≥ 0, n = −l, . . . , l, s ∈ Z2 and x ∈ S2.

Proof. This is a well-known property of the spherical harmonics.

Thus, together with Section 6.4.2 we get the following transformation behavior of
spherical harmonics under the group O(3), where s ∈ Z2 and g ∈ SO(3):

λ(sg)(Y n
l ) = slλ(g)(Y n

l )

= sl
l∑

n′=−l

Dn′n
l (g)Y n′

l

=
l∑

n′=−l

(
slDn′n

l (g)
)
Y n′

l

=

{∑l
n′=−lD

n′n
l+ (sg)Y n′

l , l even∑l
n′=−lD

n′n
l− (sg)Y n′

l , l odd.

Thus, we obtain the following decomposition of L2
C(S

2):

L2
C(S

2) =
⊕̂
l≥0
l even

Vl1+ ⊕
⊕̂
l≥0
l odd

Vl1−.

Here, Vl1+ and Vl1− are generated from the spherical harmonics of order l and we
have Vl1+ ∼= Vl+ and Vl1− ∼= Vl− as representations according to the transformation
behavior we saw above.

9With this, we mean the following: the irreducible representations of SO(3) already cover L2
C(S

2).
O(3) has even more irreducible representations than SO(3), so it is a priori clear that they cannot
all �t into L2

C(S
2).
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6.6.3. The Clebsch-Gordan Decomposition

Remember from Section 6.4.3 that we have a decomposition of SO(3)-representations

Vj ⊗ Vl ∼=
l+j⊕

J=|l−j|

VJ

given by real Clebsch-Gordan coe�cients. Now for O(3), remember that as vector
spaces we have for all j (and equally for l and J ) equalities Vj = Vj− = Vj+, and
so we guess that in the isomorphism above, we just need to �gure out the correct
signs in order to be compatible with the corresponding representations. The idea is
that “multiplying the signs at the left” should lead to the “sign at the right”, and this
paradigm leads us to believe that there are the following isomorphisms:

Vj+ ⊗ Vl+ ∼=
l+j⊕

J=|l−j|

VJ+, Vj+ ⊗ Vl− ∼=
l+j⊕

J=|l−j|

VJ−,

Vj− ⊗ Vl+ ∼=
l+j⊕

J=|l−j|

VJ−, Vj− ⊗ Vl− ∼=
l+j⊕

J=|l−j|

VJ+.

We just show the lower-left isomorphism since the arguments are always the same.
So, assume that f : Vj ⊗ Vl →

⊕l+j
J=|l−j| VJ is an isomorphism and thus in particular

intertwines the given representations. Now, we take the exact same map f : Vj− ⊗
Vl+ →

⊕l+j
J=|l−j| VJ− and only need to �gure out that it is equivariant with respect to

the given representations, using the same property for the original isomorphism we
started with:

f ◦
[
Dj−(sg)⊗Dl+(sg)

]
= f ◦

[
s(Dj(g)⊗Dl(g))

]
= s

l+j⊕
J=|l−j|

DJ(g) ◦ f

=

l+j⊕
J=|l−j|

DJ−(sg) ◦ f.

This shows the claim. From these considerations, it also follows that the Clebsch-
Gordan coe�cients do not in any way depend on the signs of the spaces Vj , Vl, VJ .
Thus, we write them generically as 〈JM |jmln〉.

6.6.4. Endomorphisms of VJ
As always over C, Schur’s Lemma 4.1.8 shows that the endomorphism spaces are 1-
dimensional, and thus we can ignore endomorphisms.
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6.6.5. Bringing Everything Together
Now we can �nally compute the basis for steerable kernels. The section on the Clebsch-
Gordan decomposition suggests that we need to do a case distinction for this. Namely,
the possible kernels depend on the signs of Vl and VJ . The results basically follow
analogously to the results in Section 6.4.5.

Steerable Kernels K : S2 → HomC(Vl+, VJ+):

VJ+ can only be in a tensor product Vj ⊗ Vl+ if the sign of j is positive. Spaces Vj1+
appear in the tensor product decomposition of L2

C(S
2) precisely for even j, according

to Section 6.6.2. Thus, a basis for steerable kernels is given by all Kj with even j ∈{
|l − J |, . . . , l + J

}
. It has matrix elements

〈JM |Kj(x)|ln〉 =
j∑

m=−j

〈JM |jmln〉 · Y m
j (x),

exactly as in Section 6.4.5.

Steerable Kernels K : S2 → HomC(Vl+, VJ−):

Analogously, a basis for steerable kernels is given by all Kj , with odd j ∈
{
|l −

J |, . . . , l + J
}

.

Steerable Kernels K : S2 → HomC(Vl−, VJ+):

Again, a basis for steerable kernels is given by allKj with odd j ∈
{
|l−J |, . . . , l+J

}
.

Steerable Kernels K : S2 → HomC(Vl−, VJ−):

As in the �rst case, a basis for steerable kernels is given by all Kj with even j ∈{
|l − J |, . . . , l + J

}
.

Thus, we have determined all kernel bases for the group O(3) over the complex num-
bers. Compared to SO(3), we see that the kernel spaces get roughly halved. The
reason for this is that with a bigger symmetry group, the kernel needs to obey more
rules, which means that the kernel constraint has fewer solutions.

6.7. O(3)-Equivariant Kernels for Real
Representations

Basically, we can argue exactly as in Section 6.5.4 in order to transport the results for
complex representations over to the real world. We shortly sketch the procedure and
outcome. As we know from Section 6.3.1, ρ− : Z2 → O(R) and ρ+ : Z2 → O(R) are
the only irreducible real representations of Z2. Thus, for each l ≥ 0 we obtain two
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irreducible real representations Dr l+ : O(3)→ O(rVl+) and Dr l− : O(3)→ O(rVl−).
As before, they also act on complex vector spaces and are as such isomorphic to the
complex irreducible representations of O(3). One can then show as in Lemma 6.5.11
that all complex irreducible representations are of real type since they split into two
copies of the real version of this representation. Thus, by Corollary 6.5.12, all real
irreducible representations are of real type, and this means that we can proceed exactly
as in Proposition 6.5.13 in order to show that the Dr l+ and Dr l− are already all the
irreducible real representations of O(3) up to equivalence.
For the Peter-Weyl decomposition ofL2

R(S
2), we only need to note that the real spher-

ical harmonics emerge with a base change from the complex ones, as seen in Equation
6.3, and thus ful�ll the same parity rules as the complex spherical harmonics. This
gives us a decomposition

L2
R(S

2) =
⊕̂
l≥0
l even

(
rVl1+

)
⊕
⊕̂
l≥0
l odd

(
rVl1−

)
.

For the Clebsch-Gordan coe�cients, we again get decompositions

rVj ⊗ rVl ∼=
l+j⊕

J=|l−j|

rVJ

where the signs on the left must “multiply to” the signs on the right, as in Section 6.6.3.
Finally, the endomorphism spaces must be 1-dimensional since the endomorphism
spaces of the complex versions are 1-dimensional.
Overall, we obtain the same kernels as in Section 6.6.5, only that we need to use the real
spherical harmonics as our steerable �lters and can get rid of the complex conjugation.
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7. Conclusion and Future Work
In this work, we have stated and proven a Wigner-Eckart Theorem for steerable ker-
nels of general compact groups, which leads to a general description of how to param-
eterize steerable CNNs and gauge equivariant neural networks for compact transfor-
mation groups. We have done this by linearizing steerable kernels in a suitable way
such that they can be understood similar to spherical tensor operators in physics. We
have shown how the basis kernels can always be succinctly described using endo-
morphisms of irreducible representations, Clebsch-Gordan coe�cients, and harmonic
basis functions. In the examples, we have demonstrated that it is a structured and
doable process to �gure out these ingredients in speci�c use cases. This answers the
�rst four of the research questions that we stated in Section 1.3.
Several open questions remain that we want to discuss here. We start by discussing
how practitioners might go about to solve for steerable kernel bases in speci�c situ-
ations that they face. Afterward, we discuss how the results in this thesis might be
further generalized, which is the �fth research question that we have formulated in
the beginning.

7.1. Recommendations for Applying our Result to
Find Steerable Kernel Bases of New Groups

We think in the following direction: we have stated in Theorem 2.1.22 a version of
the Peter-Weyl Theorem that works for arbitrary homogeneous spaces of compact
groups and for both the �elds R and C. However, this was only an existence state-
ment about a decomposition of the space of square-integrable functions and does not
directly answer the question of how one might obtain this decomposition in practice.
As one could see in the demonstration of our examples in Chapter 6, this can usually
be done. Nevertheless, we note that we made heavy use of well-known results in har-
monic analysis along the way that would have been hard to obtain from scratch. The
same certainly holds for some of the results on Clebsch-Gordan decompositions that
we have taken from the literature, especially for the group SO(3). While it might not
be worthwhile to try to prove general theorems in this area, especially since this is
probably considered to be a sub�eld of harmonic analysis and representation theory
and would take one further away from deep learning, we assume that the following
pointers might help the interested practitioner in �nding steerable kernel bases in
practice:

1. Even if one is interested in steerable kernels for real representations, it is of-
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7. Conclusion and Future Work

ten useful to �rst try to solve for them in the complex case. This also has the
advantage that one does not need to worry about endomorphisms.

2. Furthermore, in the complex, case one has access to the Peter-Weyl Theorem as
it is stated in the literature. If the homogeneous space is the full group G then
this means that normalizations of the matrix coe�cients of irreducible repre-
sentations form the harmonic basis functions of L2

C(G). Since L2
C(X) is a sub-

space of L2
C(G), one can sometimes hope that the matrix coe�cients also help

for �nding the basis functions of L2
C(X), especially if L2

C(X) is a subspace in a
“non-twisted way”.

3. Sometimes, one might have access to collections of square-integrable functions
that transform as irreducible representations, but one is maybe not completely
sure whether this already exhausts the space of square-integrable functions, i.e.
whether the basis is complete. For knowing this, it would be useful to obtain a
priori some knowledge about the multiplicities of the di�erent irreducible rep-
resentations in L2

K(X). Some results in this direction can be found in Gallier
and Quaintance [41], Chapter 6.10.

4. If one tries to transport the result over into the real realm, then one might be
lucky, as in our examples of SO(3) and O(3). Here, one could show that all
complex irreducible representations are of real type, which resulted in all real
irreducible representations to be of real type as well. Additionally, they could
all be found as direct summands of the complex irreducible representations with
restricted scalars. If all irreducible real representations are of real type, then one
can ignore endomorphisms also in the real case.

5. The most peculiar example we saw was that of SO(2)-equivariant kernels over
the real numbers. In this case, the result was not completely analogous to the
one in the complex domain, i.e. the case of harmonic networks [4]. The reason
was that the irreducible representations were mostly of complex type, instead of
real type, which meant that the endomorphism spaces were 2-dimensional (i.e.
isomorphic to C). This complicates the considerations. It might be interesting
to look into the underlying structure of this example once more in order to infer
generalizable results. It is probably helpful to consult Bröcker and Dieck [40],
Chapter II.6, for this.

6. Furthermore, let us mention that in practice, in very di�cult cases, one may
have no need to even solve all of these problems analytically, as was already ob-
served by Shutty and Wierzynski [33]. This paper observed that Clebsch-Gordan
coe�cients can be found algorithmically by solving a linear program and that
one may be able to learn irreducible representations. We note that additionally,
endomorphisms can probably be found in a similar way. For endomorphism
spaces, it may help to �rst �nd out the dimensionality of the endomorphism
space, which can for example be achieved using the Schur indicator function,
see Bröcker and Dieck [40], Proposition II.6.8.
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7.2. A Possible Generalization to Equivariant CNNs
on Homogeneous Spaces

We are overall most excited about the idea to further generalize the results in this
work. As mentioned, our kernel solution completely covers that of steerable CNNs on
Rn and of gauge equivariant CNNs operating on arbitrary Riemannian manifolds, at
least for the case of compact transformation groups. This is a quite general setting,
however, it assumes the kernel to always be de�ned on a �at space or, as in the case
of gauge equivariant CNNs, the tangent spaces.
We are especially interested in generalizing the kernel solution to the case of equiv-
ariant CNNs on homogeneous spaces [11]. As mentioned in Section 5.5, one then
deals with the case of a unimodular locally compact group H and two subgroups Gin

and Gout that act via input- and output representations ρin : Gin → AutK(Vin) and
ρout : Gout → AutK(Vout). One characterization for the space of steerable kernels in
this setting is the following:

HomGin×Gout(H,HomK(Vin, Vout))

=
{
K : H → HomK(Vin, Vout) | K(gouthgin) = ρout(gout) ◦K(h) ◦ ρin(gin)

}
.

(7.1)

How can one interpret this in light of representation theory? The most useful way
seems the following, as we have already indicated in the notation with the subscript
Gin ×Gout

1. Namely, the group Gin ×Gout acts from the left on H by

(gin, gout) · h := gouthg
−1
in .

Furthermore, Gin × Gout has a Hom-representation on HomK(Vin, Vout) that is con-
structed similarly to the Hom-representation of a single group, only that now two
group elements take part in the action:[

ρHom(gin, gout)
]
(f) := ρout(gout) ◦ f ◦ ρin(gin)−1. (7.2)

Then, one can see that the set of steerable kernels is just the set of Gin × Gout-
equivariant maps H → HomK(Vin, Vout). More precisely, the kernel constraint can
be written as

K
(
(gin, gout) · h

)
= ρHom(gin, gout)

(
K(h)

)
for all h ∈ H , gin ∈ Gin and gout ∈ Gout. Note that there is now a sign �ip compared to
the original formulation in 7.1. As in our setting in Theorem 3.1.7, one can hope that
there is a correspondence between such steerable kernels and kernel operators on the
space of square-integrable functions on H , L2

K(H). For this to make sense, one can
de�ne the following representation ofGin×Gout on L2

K(H), which works completely
analogously to what we have seen before:

λ : Gin×Gout → U(L2
K(H)),

[
λ(gin, gout)(ϕ)

]
(h) := ϕ

(
(gin, gout)

−1·h
)
= ϕ

(
g−1outhgin

)
.

1This subscript is not present in the original work.
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It is not entirely clear whether a correspondence between kernels and kernel operators
is possible in this level of generality. One important reason is that in the proof of this
theorem, especially in Lemma 3.2.11, we have actually made use of the compactness of
G in order to get a description of kernel operators. Namely, the Peter-Weyl Theorem
was used, which is a statement about compact groups and not valid for locally compact
groups. But we note that the intuitions as to why this theorem is true which we gave
in Section 3.1.4 seem more general. Therefore, there is hope for a generalization.
However, even if this correspondence can be established, one cannot just ignore the
missing compactness altogether. Namely, in order to establish a Wigner-Eckart Theo-
rem for steerable kernels in Theorem 4.1.13, we have �rst established a Wigner-Eckart
Theorem for kernel operators, which crucially depended on the ability to decompose
L2
K(X). Nevertheless, we mention that there might be a way out: in case that a group

G is is of so-called type I, second-countable and locally compact, the space of square-
integrable functions on G has a direct integral decomposition

L2
C(G)

∼=
∫
π∈Ĝ

Eπdπ,

where Eπ is the space of so-called Hilbert-Schmidt endomorphisms of the underlying
Hilbert space of the irreducible representation with index π, and dπ is the so-called
Plancherel measure. This is a generalization of the Peter-Weyl Theorem that can be
found in Segal [42] and Mautner [43]. We have neither yet looked into the precise
meaning of this formula, nor have we tried to investigate its applicability for proving a
Wigner-Eckart Theorem for kernel operators on L2

K(H) from above, but it is certainly
a result that is worth to be further explored. Also, note that L2

K(H) is not considered
as a representation ofH itself in our setting, but of the groupGin×Gout, so this setting
is a bit di�erent from the one considered in the direct integral decomposition above.
We also mention that 7.1 is not the only characterization of the space of equivariant
kernels given in Cohen et al. [11], and other ones might lead to an easier generalization
of our work. We also have no clear sense yet what role the group structure of H
plays, since the representation theory that enters is mostly the one of Gin and Gout.
Furthermore, one might also decompose H into orbits of the left action of Gin×Gout,
which gives compact orbits if Gin and Gout are compact. It seems worthwhile to start
generalizing our results by �rst looking at this compact case of the theory of CNNs on
homogeneous spaces, and then to proceed from there.
Overall we hope that this discussion of further generalizations is a fruitful food for
thought for any theoreticians who would like to tackle interesting problems on the
intersection of deep learning, representation theory, harmonic analysis, and physics.
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A. Mathematical Preliminaries
In this appendix, we state mathematical preliminaries that we use throughout the text.
In this whole chapter, K is one of the two �elds R or C.

A.1. Concepts from Topology, Normed Spaces, and
Metric Spaces

Since in this work, we want to develop the theory of representations over compact
groups, and since this is a topological property, we need to formulate some topological
concepts [23]. Additionally, the vector spaces on which our compact groups act also
carry a topology, mostly coming from their Hilbert space structure.

De�nition A.1.1 (Topological Space, Open Sets, Closed Sets). A topological space
(X, T ) consists of a set X and a set T of subsets of X , called the open sets, such
that arbitrary unions and �nite intersections of open sets are open. In particular, X
and the empty set ∅ are open. Closed sets are the complements of open sets and ful�ll
dual axioms: arbitrary intersections and �nite unions of closed sets are closed.

Let in the following X and Y be topological spaces.

De�nition A.1.2 (Open Neighborhood). Let x ∈ X . An open set U ⊆ X is called
open neighborhood of x if x ∈ U .

De�nitionA.1.3 (Hausdor� Space). X is called aHausdor� space if two distinct points
can always be separated by open sets, i.e. for all x, y ∈ X there exist Ux, Uy open such
that x ∈ Ux, y ∈ Uy, and Ux ∩ Uy = ∅.

In this work, all topological spaces are Hausdor�.

De�nition A.1.4 (Subspace). AssumeA ⊆ X is a subset. Then the set TA := {U∩A |
U ∈ T } is a topology for A and thus makes A a topological space as well. It is called
a subspace of X .

Whenever we consider a subset of a topological space, it is viewed as a topological
space with this construction.

De�nitionA.1.5 (Closure, density). ForA ⊆ X , its closureA is de�ned as the smallest
closed subset of X that contains A. Equivalently, it is the intersection of all closed
subsets of X containing A, which is closed by the axioms of a topology. A is called
dense in X if A = X .
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De�nition A.1.6 (Continuous Function, homeomorphism). A function f : X → Y
is called continuous if preimages of open sets are always open. Equivalently, for each
point x0 ∈ X and each open neighborhood V of f(x0) there is an open neighborhood
U of x0 such that f(U) ⊆ V .
A homeomorphism is a continuous bijective function with a continuous inverse.

Note that compositions of continuous functions are continuous as well.

De�nition A.1.7 (Open Cover, Compact Space). An open cover of X is a family of
open sets {Ui}i∈I that cover X , i.e. X =

⋃
i∈I Ui. X is called compact if all open

covers have a �nite subcover, that is: For all open covers {Ui}i∈I there exists a �nite
subset J ⊆ I such that {Ui}i∈J is still an open cover of X .

Proposition A.1.8. If X is compact and f : X → Y is continuous, then f(X) ⊆ Y is
compact as well. In particular, if f surjective, then Y is compact.

Proof. See Sutherland [44], Proposition 13.15.

Proposition A.1.9. Let f : X → Y be a continuous bijection and assume that X is
compact and that Y is Hausdor�. Then the inverse f−1 is continuous as well and thus f
is a homeomorphism.

Proof. See Sutherland [44], Proposition 13.26.

De�nition A.1.10 (Product Topology). The product topology onX×Y is the coarsest
(i.e. smallest in terms of inclusion) topology that makes both projections pX : X ×
Y → X and pY : X × Y → Y continuous.

If Z is a third topological space and we have two continuous functions fX : Z → X
and fY : Z → Y , then the function fX × fY : Z → X × Y , z 7→ (fX(z), fY (z)) is
continuous as well.

De�nition A.1.11 (Quotient Map, Quotient Space). A continuous function f : X →
Y is called a quotientmap if f is surjective and ifU ⊆ Y is open if and only if f−1(U) ⊆
X is open.
Let ∼ be any equivalence relation on X and X/∼ be the quotient set formed by iden-
tifying equivalent elements. Let q : X → X/∼ be the canonical function sending
each element to its equivalence class. We de�ne U ⊆ X/∼ to be open if q−1(U) ⊆ X
is open. Then q is a quotient map and X/∼ is called a quotient space.

Proposition A.1.12 (Universal property of Quotient Maps). Let q : X → X/∼ be a
standard quotient map and f : X → Y be any continuous function such that f(x) =
f(x′) whenever x ∼ x′. Then there is a unique continuous function f : X/∼ → Y such
that the following diagram commutes:

X Y

X/∼

f

q
f

f is given on equivalence classes by f([x]) = f(x).
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Proof. See Conway [23], Proposition 2.8.7.

It can be shown that all quotient maps are equivalent to a construction of the form
q : X → X/∼. Namely, for a quotient map f : X → Y , de�ne ∼ by x ∼ x′ if
f(x) = f(x′). Then the map f : X/∼ → Y , [x] 7→ f(x) is a well-de�ned continuous
map by the universal property of quotient maps Proposition A.1.12. One can show
that this is a homeomorphism. Thus for a quotient map f : X → Y we also call Y a
quotient space.
Our route for de�ning concrete topologies is in most cases through the existence of
inner products on Hilbert spaces, which will be de�ned in detail in De�nition A.2.1.
Namely, inner products de�ne norms, which de�ne metrics [45], which in turn de�ne
topologies. For this, we need some de�nitions:

De�nition A.1.13 (Norm). Let V be a K-vector space, A norm on V is a map ‖ · ‖ :
V → R≥0 with the following properties for all λ ∈ K and v, w ∈ V :

1. ‖v‖ = 0 if and only if v = 0.

2. ‖λv‖ = |λ| · ‖v‖.

3. Triangle inequality: ‖v + w‖ ≤ ‖v‖+ ‖w‖.

If 〈·|·〉 : V × V → K is an inner product on a Hilbert space, then it de�nes a norm
‖ · ‖ : V → R≥0 by ‖x‖ :=

√
〈x|x〉.

De�nition A.1.14 (Metric). Let Y be a set. A metric on Y is a function d : Y × Y →
R≥0 with the following properties for all x, y, z ∈ Y :

1. d(x, y) = 0 if and only if x = y.

2. Symmetry: d(x, y) = d(y, x).

3. Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

A norm ‖·‖ : V → R≥0 de�nes a metric d : V ×V → R by setting d(x, y) := ‖x−y‖.
In turn, a metric de�nes a topology as follows: open balls are given by all sets of the
form Bε(x) := {y ∈ V | d(x, y) < ε} for all x ∈ V and ε > 0. Open sets are then
de�ned as arbitrary unions of arbitrary open balls.
Additionally, we need notions about convergence in this work. Since we will deal with
them mostly in the context of metric spaces (with normed vector spaces and Hilbert
spaces being special cases, as explained above), we focus on these notions for metric
spaces.

De�nition A.1.15 (Convergent Sequence). Let Y be a metric space. Then a sequence
(yk)k in Y is said to converge to y if for all ε > 0 there is a kε ∈ N such that yk ∈ Bε(y)
for all k ≥ kε.

With this in mind, one can give an equivalent de�nition of continuity that applies to
metric spaces:
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De�nition A.1.16 (Continuity in metric spaces). A function f : Y → Z between
metric spaces is continuous in y ∈ Y if for each sequence (yk)k of points yk ∈ Y
converging to a point y ∈ Y , we also have that the sequence f(yk) converges to f(y).
This can be understood in terms of the function “commuting with limits”:

lim
k→∞

f(yk) = f
(
lim
k→∞

yk
)
.

Furthermore, f : Y → Z is called continuous if it is continuous in all points y ∈ Y .

Equivalently, the following holds: f : Y → Z is continuous in y ∈ Y if and only of
for all ε > 0 there is a δ > 0 such that f (Bδ(y)) ⊆ Bε(f(y)).

De�nition A.1.17 (Uniform continuity). A function f : Y → Z between metric
spaces is called uniformly continuous if for each ε > 0 there is a δ > 0 such that for all
y, y′ ∈ Y with dY (y, y′) < δ we obtain dY (f(y), f(y′)) < ε.

The following is a result we use several times in the main text:

PropositionA.1.18. Let f : V → V ′ be a linear function between normed vector spaces.
Then the following are equivalent:

1. f is uniformly continuous.

2. f is continuous.

3. f is continuous in 0.

Proof. Trivially, 1 implies 2, which in turn implies 3. Now assume 3, i.e. f is continu-
ous in 0. Let ε > 0. Then by continuity in 0, there exists δ > 0 such that for all v ∈ V
with ‖v‖ = ‖v − 0‖ < δ we obtain ‖f(v)‖ = ‖f(v) − f(0)‖ < ε. Now let v, v′ ∈ V
be arbitrary with ‖v − v′‖ < δ. Then by the linearity of f we obtain:

‖f(v)− f(v′)‖ = ‖f(v − v′)‖ < ε,

which is exactly what we wanted to show.

Sometimes, sequences look like they converge since their elements get ever closer to
each other. However, not all such sequences need to converge. Therefore, there is the
following notion:

De�nition A.1.19 (Cauchy Sequence). Let Y be a metric space. A sequence (yk)k in
Y is a Cauchy Sequence if for all ε > 0 there is kε ∈ N such that for all k, k′ > kε we
have d(yk, yk′) < ε.

For example, one can consider the metric spaceR\{0} together with the usual metric.
Then the sequence

(
1
k

)
k

is a Cauchy sequence but does not converge since the limit
(in R!), which would be 0, is not in R \ {0}. Thus, the following notion is useful:
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De�nition A.1.20 (Complete Metric Space). A metric space Y is called complete if
every Cauchy sequence converges.

De�nition A.1.21 (Completion). Let Y be a metric space. A completion of Y is a
metric space Y ′ which contains Y as a dense subspace and such that Y ′ is complete.

Proposition A.1.22 (Universal Property of Completions). Assume that Y ⊆ Y ′ is
a pair of metric spaces, where Y ′ is a completion of Y . Then the following universal
property holds:
Let Z be any complete metric space and f : Y → Z be any uniformly continuous
function. Then there is a unique continuous function f ′ : Y ′ → Z that extends f , i.e.
such that f ′|Y = f . f ′ furthermore is also uniformly continuous. This can be expressed
by the following commutative diagram, where i : Y → Y ′ is the canonical inclusion:

Y Z

Y ′

f

i
f ′

Proof. See for example Kaplansky [45].

De�nition A.1.23 (Boundedness). Let Y be a metric space. A subset A ⊆ Y is called
bounded if there is a constant C > 0 such that d(a, b) ≤ C for all a, b ∈ A.

Theorem A.1.24 (Heine-Borel Theorem). A subset A ⊆ Kd is compact if and only if
it is closed and bounded.

Proof. See Conway [23], Theorem 1.4.8.

Corollary A.1.25 (Extreme Value Theorem). Let f : X → R be continuous, where X
is any nonempty compact topological space. Then f has a maximum and a minimum.

Proof. By Proposition A.1.8, f(X) ⊆ R is compact. By Theorem A.1.24 this means
that f(X) is closed and bounded. Boundedness means that the supremum is �nite
and closedness means that the supremum must lie in f(X), and consequently it is a
maximum. For the minimum, the same arguments apply.

A.2. Pre-Hilbert Spaces and Hilbert Spaces
Here, we state foundational concepts in the theory of Hilbert spaces [46].

De�nition A.2.1 (pre-Hilbert Space, Hilbert space). A pre-Hilbert space V = (V, 〈·|·〉)
consists of the following data:

1. A vector space V over K.

2. An inner product 〈·|·〉 : V × V → K, (x, y) 7→ 〈x|y〉.
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It has the following properties that hold for all x, x′, y, y′ ∈ V , λ ∈ K:

1. The inner product is conjugate linear in the �rst component: 〈x+ x′|y〉 =
〈x|y〉+ 〈x′|y〉 and 〈λx|y〉 = λ 〈x|y〉, where λ is the complex conjugate of λ.

2. The inner product is linear in the second component: 〈x|y + y′〉 = 〈x|y〉+〈x|y′〉
and 〈x|λy〉 = λ 〈x|y〉.

3. The inner product is conjugate symmetric: 〈y|x〉 = 〈x|y〉

4. The inner product is positive de�nite: 〈x|x〉 > 0 unless x = 0.

If additionally, the following statement holds, then V is called a Hilbert Space:

5. V , together with the norm ‖ · ‖ : V → V induced from the inner product by
‖x‖ :=

√
〈x|x〉, and consequently the metric de�ned by d(x, y) := ‖x − y‖, is

a complete metric space as in De�nition A.1.20.

Remark A.2.2. Of course, all Hilbert Spaces are pre-Hilbert spaces, and so all Proposi-
tions about pre-Hilbert spaces in the following apply to Hilbert spaces just as well.
Note that the �rst property follows from the second and third. We also mention that
usually, inner products on Hilbert spaces are assumed to be linear in the �rst and con-
jugate linear in the second component, in contrast to how we view it. The reason for
our choice is that our work is inspired by connections to physics where our conven-
tion is more common. It is basically the bra-ket convention. Furthermore, note that if
K = R, then conjugate linear maps are linear and thus the inner product will be lin-
ear in both components. Additionally, it will be symmetric instead of only conjugate
symmetric.

Proposition A.2.3 (Cauchy-Schwartz inequality). For any two elements v, w in a pre-
Hilbert space V , we have

| 〈v|w〉 | ≤ ‖v‖ · ‖w‖.

We have equality if and only if v and w are linearly dependent.

Proof. See Debnath and Mikusinski [46], Theorem 3.2.9.

De�nitionA.2.4 (Orthogonality). Two vectors v, w in a pre-Hilbert space V are called
orthogonal, written v ⊥ w, if〈v|w〉 = 0.

Obviously, being orthogonal is a symmetric relation.

De�nition A.2.5 (Orthogonal Complement). Let V be a pre-Hilbert space and W ⊆
V a subset. v ∈ V is orthogonal toW if 〈v | w〉 = 0 for all w ∈ W .
The orthogonal complement of W , denoted W⊥, is the set of all vectors in V that are
orthogonal to W .

Proposition A.2.6 (Closedness of Complements). Let W ⊆ V be a subset of a pre-
Hilbert space V . ThenW⊥ is a topologically closed linear subspace of V .
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Proof. See Debnath and Mikusinski [46], Theorem 3.6.2.

Proposition A.2.7 (Continuity of Scalar Product). For any pre-Hilbert space V , the
scalar product 〈·|·〉 : V × V → K is continuous.

Proof. See Debnath and Mikusinski [46], Theorem 3.3.12.

De�nition A.2.8 (Orthonormal System). A family (vi)i∈I of elements in a pre-Hilbert
space is called orthonormal system if ‖vi‖ = 1 for all i ∈ I and vi ⊥ vj for all i 6= j.

De�nition A.2.9 (Orthonormal Basis). An orthonormal system (vi)i∈I in a Hilbert
space V is called orthonormal basis if the linear span of all {vi}i∈I is dense in V . If this
is the case, then each v ∈ V can be uniquely written as

v =
∑
i∈I

αivi

with only countably many αi ∈ K being nonzero. The coe�cients are given by αi =
〈vi|v〉.

We stress that while the index set I can be uncountably in�nite, the sequence expan-
sions of each element in V only have countably many entries. It is obvious from the
Peter-Weyl Theorem 2.1.22 and this de�nition that the functions{

Y m
li | l ∈ Ĝ, i ∈ {1, . . . ,ml},m ∈ {1, . . . , [l]}

}
form an orthonormal basis of L2

K(X).

Proposition A.2.10 (Gram-Schmidt Orthonormalization). For every linearly indepen-
dent sequence (yk)k in a pre-Hilbert space V with N ∈ N∪ {∞} elements, one can �nd
an orthonormal sequence (vk)k in V such that the following holds: for all n ∈ N, n ≤ N ,
the progressive linear span stays the same:

spanK(v1, . . . , vn) = spanK(y1, . . . , yn).

In particular, since every �nite-dimensional Hilbert space has a vector space basis, it
necessarily also has an orthonormal basis.

Proof. See Debnath and Mikusinski [46], page 110.

De�nition A.2.11 (Adjoint of an operator). Let f : V → V ′ be a continuous linear
function between Hilbert spaces. Then there is a unique continuous linear function
f ∗ : V ′ → V such that for all v ∈ V and v′ ∈ V ′ one has:

〈f(v)|v′〉V ′ = 〈v|f
∗(v′)〉V .

f ∗ is called the adjoint of f .
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The existence of adjoints is for example discussed in Debnath and Mikusinski [46],
page 158. This book only considers the case of operators on a Hilbert space to itself,
but these considerations generalize to the setting with two di�erent Hilbert spaces.
One has the following:

Proposition A.2.12. Let f : V → V ′ and g : V ′ → V ′′ be continuous linear functions
between Hilbert spaces. Then:

1. (f ∗)∗ = f .

2. id∗V = idV .

3. (g ◦ f)∗ = f ∗ ◦ g∗.

Proof. All of these properties follow directly from the uniqueness of adjoints.

Proposition A.2.13. Let f : V → V ′ be a unitary transformation between Hilbert
spaces, i.e. an invertible linear function such that 〈f(v)|f(w)〉 = 〈v|w〉 for all v, w ∈ V .
Then the adjoint is the inverse, i.e. f ∗ = f−1.

Proof. First of all, the inverse f−1 is again continuous due to the unitarity of f . Fur-
thermore, due to the unitarity, we obtain

〈f(v)|v′〉 =
〈
f(v)

∣∣f(f−1(v′))〉
=
〈
v
∣∣f−1(v′)〉

for all v ∈ V and v′ ∈ V ′. Due to the uniqueness of adjoints, we obtain f−1 = f ∗.

The following proposition is sometimes used in the main text:

Proposition A.2.14. Let v, w ∈ V be two elements in a pre-Hilbert space such that
〈v|u〉 = 〈w|u〉 for all u ∈ V . Then v = w.

Proof. We have
〈v − w|u〉 = 〈v|u〉 − 〈w|u〉 = 0

for all u ∈ V . In particular, when setting u = v − w we obtain

〈v − w|v − w〉 = 0

and thus v − w = 0, i.e. v = w.

Proposition A.2.15 (Orthogonal Projection Operators). LetW ⊆ V be a topologically
closed subspace of a Hilbert space. Then there is a continuous linear function P : V → W
such that for all v ∈ V and w ∈ W we have

〈P (v)|w〉 = 〈v|w〉 .

Furthermore, ifW is �nite-dimensional and w1, . . . , wn and orthonormal basis, then P
is given explicitly by

P (v) =
n∑
i=1

〈wi|v〉wi.
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Proof. ThatW is topologically closed means thatW , with the scalar product inherited
from V , is a complete metric space. Thus, W is a Hilbert space as well. Therefore, the
continuous linear embedding i : W → V given by w 7→ w has an adjoint i∗ : V → W
by De�nition A.2.11. Set P := i∗. For arbitrary v ∈ V and w ∈ W we obtain:

〈P (v)|w〉 = 〈i∗(v)|w〉
= 〈v|i(w)〉
= 〈v|w〉 .

For the second statement, note that for all j ∈ {1, . . . , n} we have, using that the wi
are orthonormal: 〈∑n

i=1
〈wi|v〉wi

∣∣∣wj〉 =
∑n

i=1
〈wi|v〉 〈wi|wj〉

= 〈v|wj〉
= 〈P (v)|wj〉 .

By Proposition A.2.14 and since the wj generate W we obtain
∑n

i=1 〈wi|v〉wi = P (v)
as claimed.

Proposition A.2.16. Let (V, 〈·|·〉) be a �nite-dimensional pre-Hilbert space. Then this
space is already complete and thus a Hilbert space.
In particular, all �nite-dimensional subspaces of Hilbert spaces are topologically closed.

Proof. The proof of the Gram-Schmidt orthonormalization in Proposition A.2.10 does
not make use of the completeness of the Hilbert space, and thus it holds for pre-Hilbert
spaces as well. Consequently, V , being �nite-dimensional, has an orthonormal basis.
It is thus isomorphic to Kn together with the standard scalar product, which is well-
known to be complete. Thus, V is a Hilbert space.
Now, let W ⊆ V be a �nite-dimensional subspace of a Hilbert space V which may
be in�nite-dimensional. Then W is a pre-Hilbert space and by what was just shown
a Hilbert space. Consequently, all sequences in W which have a limit in V need, by
completeness, to have that limit already in W . This shows that W is topologically
closed.
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