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ABSTRACT

Equivariance is becoming an increasingly popular design choice to build data
efficient neural networks by exploiting prior knowledge about the symmetries of
the problem at hand. Euclidean steerable CNNs are one of the most common classes
of equivariant networks. While the constraints these architectures need to satisfy
are understood, existing approaches are tailored to specific (classes of) groups. No
generally applicable method that is practical for implementation has been described
so far. In this work, we generalize the Wigner-Eckart theorem proposed in Lang &
Weiler (2020), which characterizes general G-steerable kernel spaces for compact
groups G over their homogeneous spaces, to arbitrary G-spaces. This enables us to
directly parameterize filters in terms of a band-limited basis on the whole space
rather than on G’s orbits, but also to easily implement steerable CNNs equivariant
to a large number of groups. To demonstrate its generality, we instantiate our
method on a variety of isometry groups acting on the Euclidean space R3. Our
framework allows us to build E(3) and SE(3)-steerable CNNs like previous works,
but also CNNs with arbitrary G ≤ O(3)-steerable kernels. For example, we build
3D CNNs equivariant to the symmetries of platonic solids or choose G = SO(2)
when working with 3D data having only azimuthal symmetries. We compare these
models on 3D shapes and molecular datasets, observing improved performance by
matching the model’s symmetries to the ones of the data.

1 INTRODUCTION

In machine learning, it is common for learning tasks to present a number of symmetries. A symmetry
in the data occurs, for example, when some property (e.g., the label) does not change if a set of
transformations is applied to the data itself, e.g. translations or rotations of images. Symmetries are
algebraically described by groups. If prior knowledge about the symmetries of a task is available,
it is usually beneficial to encode them in the models used (Shawe-Taylor, 1989; Cohen & Welling,
2016a). The property of such models is referred to as equivariance and is obtained by introducing
some equivariance constraints in the architecture (see Eq. 2). A classical example are convolutional
neural networks (CNNs), which achieve translation equivariance by constraining linear layers to be
convolution operators. A wider class of equivariant models are Euclidean steerable CNNs (Cohen &
Welling, 2016b; Weiler et al., 2018a; Weiler & Cesa, 2019; Jenner & Weiler, 2022), which guarantee
equivariance to isometries Rn oG of a Euclidean space Rn, i.e., to translations and a group G of
origin-preserving transformations, such as rotations and reflections. As proven in Weiler et al. (2018a;
2021); Jenner & Weiler (2022), this requires convolutions with G-steerable (equivariant) kernels.

Our goal is developing a program to parameterize with minimal requirements arbitrary G-steerable
kernel spaces, with compact G, which are required to implement Rn oG equivariant CNNs. Lang &
Weiler (2020) provides a first step in this direction by generalizing the Wigner-Eckart theorem from
quantum mechanics to obtain a general technique to parametrizeG-steerable kernel spaces over orbits
of a compactG. The theorem reduces the task of building steerable kernel bases to that of finding some
pure representation theoretic ingredients. Since the equivariance constraint only relates points g.x ∈
Rn in the same orbit G.x ⊂ Rn, a kernel can take independent values on different orbits. Fig. 1 shows
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examples of orbits in R2 under the action of continuous planar rotations G = SO(2) (orbits are rings
of different radii) and of discrete rotations by π

2 , G = C4 (orbits are sets of four points). Hence, Lang
& Weiler (2020) suggest independently parameterizing orbits of G in Rn (colored regions in Fig.1).

xG. x

(a) Orbits of G = SO(2)

xg. x

g2. x g3. x

(b) Orbits of G = C4

Figure 1: Orbits in R2. Each
color represents points in the
same orbit under G’s action.

While this guarantees a complete parameterization of G-steerable func-
tions, the discretization of the filters requires them to be sufficiently
band-limited1. Indeed, particular care should be taken to avoid aliasing
effects while discretizing filters on a grid (e.g., to process voxelized
data). Lang & Weiler (2020) naturally support band-limiting along each
orbit of G but do not restrict the kernel across different orbits.

Intuitively, this means that a filter can be decomposed into a finite num-
ber of orbits but these should then be patched together with some smooth-
ness considerations. This introduces an important requirement and a
sensitive design choice. First, building new G-steerable CNNs requires
one to identify the orbits ofG in Rn. Second, the choice of orbits to con-
sider affects a filter’s band-width, but this relation is hard to explicitly
quantify in a general setting. This issue is more severe for smaller groups
(particularly, finite ones), as Rn decomposes into a larger number of
orbits. For example, if G = SO(2) in Fig. 1a, band-limiting along rings
is controlled by the Wigner-Eckart theorem but is not enforced along
the radial component. If G = C4 in Fig. 1b, each ring is partitioned
into discrete orbits: a larger number of orbits increases the maximum
angular frequency, so aliasing is sensitive to this design choice.

Contributions and Outline In this work, we solve this issue and
propose a general solution strategy to build arbitrary CNNs with G-steerable kernels, for any compact
groupG. Theorem 2.1 generalizes the result of Lang & Weiler (2020) fromG-homogeneous spaces to
more general spaces X carrying a G-action. Essentially, our theorem replaces the harmonic basis on
the orbits of G in X with a G-steerable basis B for unconstrained scalar filters (Freeman & Adelson,
1991) over the whole space X . Aliasing effects are thereby controlled by the choice of this initial
basis. In practice, in this work we focus on Euclidean spaces X = Rn, although the theory developed
holds for any semi-direct product group X oG, and can be extended with minor changes to general
homogeneous spaces X with compact stabilizers G (as argued in Remark D.15 in Lang & Weiler
(2020)). Since a G′-steerable basis is G-steerable for any subgroup G ≤ G′, we also propose to use
an initial G′ = O(n)-steerable basis to support any compact group G with minimal requirements.
In summary, the benefits of our method are two-fold: i) it allows direct control on band-width and
aliasing via the initial basis B and ii) it completely disentangles the discretization issues from the
choice of G, minimizing the requirements to implement equivariance to new groups. For example,
this enables the parameterization of C4 filters without discretizing rings into a finite number of points
as in Fig. 1b. Algorithm 1 summarizes our method and its requirements.

Since the planar case n=2 was extensively studied in Weiler & Cesa (2019) and since R3 has a large
variety of isometry (sub)groups, in our experiments, we put particular emphasis on the 3D setting. To
illustrate the generality of our method, we instantiate it on many different subgroups of O(3), the
group of 3D rotations and reflections, and compare them experimentally. This results in many new 3D
convolution networks, equivariant, for example, to icosahedral, axial, cylindrical or conical symme-
tries. Axial symmetries are particularly relevant since natural scenes generally have vertical orienta-
tion while discrete symmetries occur in crystallography or solid state physics; see Sec. G. In Sec.5.1,
we discuss many design choices for 3D equivariant networks, and compare them in the experiments in
Sec. 5.3. In particular, we find that designs based on different discretizations of the group and point-
wise non-linearities to be beneficial when working with volumetric data. Additionally, Sec.5.2 studies
the benefit of our basis in terms of equivariance after discretization and accuracy of trained models.

In the Appendix, we derive some results for working with representation theoretic objects to reduce
the work needed to implement new equivariant CNNs. This includes real-valued representations of
compact groups, harmonic bases for induced representations, numerical irreps decomposition and
representation theory of direct product groups. Finally, we implement the program described in this
work as a general purpose library based on PyTorch at github.com/QUVA-Lab/escnn.

1A band-limited signal’s spectrum has bounded support. Nyquist-Shannon sampling theorem states that only
sufficiently band-limited signals are faithfully represented by discrete samples. Otherwise, aliasing effects occur.
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2 THE THEORY OF STEERABLE CNNS AND G-STEERABLE KERNEL SPACES

In Sec. 2.1, we discuss preliminaries on steerable CNNs and the equivariance constraints on their
filters. Sec. 2.2 describes our generalization of Lang & Weiler (2020) used to parametrize kernels.

2.1 EUCLIDEAN STEERABLE CNNS

Equivariant neural networks are characterized by their property to commute with the action of a given
symmetry group on their input, intermediate feature spaces, and output. We focus on convolutional
networks on Euclidean spacesX = Rn, acted on by the group (Rn,+)oG, i.e. the semidirect product
of translations in (Rn,+) and origin-preserving transformations G ≤ O(n). A general framework of
equivariant convolutional models is that of steerable CNNs, which we briefly recapitulate here. For
more details, see Cohen & Welling (2016b); Weiler et al. (2018a; 2021); Weiler & Cesa (2019).

The fundamental design choice underlying steerable CNNs is that they operate on feature vector
fields, which are similar to feature maps but differ in that they are associated with a well defined
action of (Rn,+)oG. The geometric type of a feature field is prescribed by an orthogonal group
representation ρ : G→ Rdρ×dρ which determines the transformation law of dρ-dimensional feature
vectors under the action of G. Specifically, a feature field of type ρ is a map f : Rn → Rdρ which
transforms under (Rn,+)oG according to the induced representation Ind

(Rn,+)oG
G ρ:([

Ind
(Rn,+)oG
G ρ

]
(tg) f

)
(x) := ρ(g)f

(
g−1(x− t)

)
∀g ∈ G, t ∈ (Rn,+) . (1)

Intuitively, the induced representation acts by moving feature vectors spatially from g−1(x− t) to x
and by transforming each feature f(x) according to ρ(g) (see Fig. 1 in Weiler & Cesa (2019)). Notable
examples are scalar or tangent-vector fields, which transform according to the trivial representation
ρ(g) = 1 or the standard representation ρ(g) = g, respectively. Group-convolution networks (Cohen
& Welling, 2016a; Kondor & Trivedi, 2018) are special cases with ρ being the regular representation
of G. It is common to define the full feature fields of a network as a direct sum (concatenation)
f :=

⊕
i fi of multiple individual feature fields fi. The full feature space transforms according to the

direct sum representation ρ :=
⊕

i ρi, which ensures fields transform independently from each other.

Weiler et al. (2018a); Jenner & Weiler (2022) proved that, under mild assumptions, the most general
linear equivariant maps between spaces of feature fields are convolutions with G-steerable kernels. If
the input and output fields have types ρin : G→ Rdin×din and ρout : G→ Rdout×dout , G-steerable
kernels are convolution kernels K : Rn → Rdout×din satisfying the linear G-steerability constraint

K(g.x) = ρout(g)K(x)ρin(g)−1 ∀ g ∈ G, x ∈ Rn . (2)

Thus, designing steerable CNNs only requires finding a basis of the vector space of G-steerable ker-
nels, which is then used to parameterize conventional Euclidean convolutions. Note that Eq. 2 relates
the kernel values on all points g.x in the orbit G.x, but leaves values on different orbits unrelated.

2.2 A WIGNER-ECKART THEOREM FOR SUBGROUP EQUIVARIANT CONVOLUTION KERNELS

First, we need to introduce a few concepts and some notation. To keep the presentation general,
in this section we will consider a general space X rather than Rn. Since G is compact, we can
assume all representations to be orthogonal, i.e., ρ(g−1) = ρ(g)−1 = ρ(g)T . To parametrize a kernel
K : X → Rdout×din satisfying the steerability constraint in Eq. 2, it is convenient to use its vectorized
form κ(·) = vec (K(·)) : X → Rdout·din . The constraint2 becomes:

κ(g.x) =
[
(ρin ⊗ ρout)(g)

]
κ(x) ∀g ∈ G, x ∈ X . (3)

The matrix (ρin ⊗ ρout)(g) is the Kronecker product of the two matrices ρin(g) and ρout(g).

Irrep Decomposition A useful property is that there exists a set3 Ĝ of special representations of G,
called irreducible representations or irreps, such that any representation ρ of G can be decomposed as
a direct sum of them: ρ(g) = QT

(⊕
i∈I ρi(g)

)
Q, where ρi ∈ Ĝ, I is an index set ranging over the

elements of Ĝ (possibly, with repetition) andQ is an orthogonal matrix. The direct sum ρ1(g)⊕ρ2(g)

2Note that vec (ABC) = (CT ⊗A) vec (B), where vec (·) stacks matrix columns into a vector.
3More precisely, irreps come in equivalence classes and the set Ĝ contains a representative for each class.
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Figure 2: Two (unvectorized) basis kernels (j=1, i=1, r ∈ {1, 2}) from Thm. 2.1 forG=SO(2), l=1, J=2.

of two matrices is a block diagonal matrix containing the two matrices in its blocks. W.l.o.g., we can
assume ρin and ρout in the kernel constraint from Eq. 2 to be irreps. The solutions for arbitrary ρin

and ρout can be recovered from their irreps decomposition, as explained in Weiler & Cesa (2019).
Hence, from now, we will assume irreps ρin = ρl and ρout = ρJ , where l and J are indexes over Ĝ.

Tensor Product The matrix ρin ⊗ ρout built with the Kronecker product in Eq. 3 is itself a represen-
tation of G, namely a tensor product representation. As such, we can decompose it in terms of G
irreps: ρl ⊗ ρJ = [CGlJ ]T

(⊕
j

⊕[j(lJ)]
s ρj

)
CGlJ , where [j(lJ)] indicates the multiplicity of the

irrep ρj , while CGlJ is the change of basis matrix.4 The block diagonal structure of the direct sum
allows one to distinguish blocks of rows in CGlJ , acted on by individual irreps in the direct sum. The
block associated with the s-th occurrence of ρj is denoted as CGj(lJ)

s ∈ Rdj×dldJ .

Endomorphisms We are interested in the space of equivariant linear maps between two spaces
transforming according to irreps ρj , ρj̃ ∈ Ĝ. If j 6= j̃, this space is empty, otherwise, this is the
endomorphism space of ρj . This is a vector space; assume {cjr ∈ Rdj × dj}r is a basis5 for it.

Steerable Basis To parametrize our kernels, we first need a basis for square-integrable functions on
X , i.e. for L2(X). A G-steerable basis for L2(X) is a collection of orthogonal functions {Y mji :

X → R}j∈Ĝ,m≤dj ,i≤mj , with mj a positive (possibly infinite) integer. Denoting by Yji : X → Rdj

the stack {Y mji }
dj
m=1, Yji has the defining property that ∀g ∈ G, x ∈ X, Yji(g.x) = ρj(g)Yji(x).

The vectorized constraint in Eq. 3 is equivalent to Eq. 2 with a scalar input field and a ρin⊗ρout output
one. A (vectorized) kernel κ is a G-equivariant linear map from L2(X) to Rdl·dJ , which will be
applied convolutionally over a scalar field. Hence, a basis for this kernel space is given by considering
the irreps decomposition of G’s action on L2(X) and Rdl·dJ , and, then, equivariant maps between
pairs of irreps. The basis B defines an irrep decomposition of L2(X), CGlJ decomposes ρin ⊗
ρout and equivariant maps are parameterized by each irrep’s endomorphism basis. This leads to:

Theorem 2.1 (Basis for G-Steerable Kernels). Let G be a compact group acting on a space X . Let
B={Yji}ji be a G-steerable basis for L2(X). Assume ρin =ρl and ρout =ρJ in Ĝ. Under minor
conditions, a basis for (vectorized) G-steerable kernels over X is given by K={κjisr}jisr, with:

κjisr(x) = [CGj(lJ)
s ]T · cjr · Yji(x) . (4)

The proof is in Appendix B (including the case of complex valued representations); see also Fig. 2.

Designing a new G-steerable basis B can be laborious; however, if G is a subgroup of G′ (i.e.,
G ≤ G′), a G′-steerable basis can be turned into a G-steerable one via group restriction:

Group Restriction Given two groups G ≤ G′, one can turn an irrep ρ′ of G′ into a representation
ResG

′

G ρ′ of G by restricting its domain to G. This representation is not irreducible and decomposes
as: ResG

′

G ρj′ = [IDj′ ]T
(⊕

j

⊕[jj′]
t ρj

)
IDj′ where [jj′] is the multiplicity of ρj and IDj′ is the

change of basis. As earlier, the block-diagonal structure of the direct sum distinguishes blocks of rows
of the matrix IDj′ . We denote the block associated with the t-th occurrence of ρj as IDjj′

t ∈ Rdj×dj′ .

Restricted Steerable Basis If B′ = {Yj′i′}j′i′ is a G′-steerable basis for L2(X), the following set
is a G-steerable basis, with index i = (j′i′t) (see Appendix B.3):

B = {Yj(i′j′t) | Yj(i′j′t)(x) = IDjj′

t ·Yj′i′(x)}j∈Ĝ,Yj′i′∈B′,1≤t≤[jj′] . (5)

4CG stands for Clebsh-Gordan since this matrix contains the so-called Clebsh-Gordan coefficients.
5In the complex case, such matrices are multiples of the identity, but this space can be larger in the real case.
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We present two examples on the circle X=S1; see Appendix B.4 for more detailed examples.

Example 1: SO(2)-Steerable Kernels In Fig. 3, we show a simple example of the basis for a
G = SO(2)-steerable kernel space. Since X = S1 is an orbit of G, our parameterization is
equivalent to Lang & Weiler (2020). An SO(2)-steerable basis on X = S1 is given by the
circular harmonics: Y 0

ji(θ) = cos(jθ) and Y 1
ji(θ) = sin(jθ), for j ∈ N and i = 1. We con-

sider steerable kernels with input irrep ρin = ρl=0 and output irrep ρout one of ρJ=0, ρJ=1 or

j=0,r=1

(a) J=0

j=1,r=1 j=1,r=2

(b) J=1

j=2,r=1 j=2,r=2

(c) J=2

Figure 3: Basis for G = SO(2)-steerable kernels from
Eq. 4. ρin = ρl=0 is 1-dimensional. ρout = ρJ for J ∈
{0, 1, 2}, which are 1, 2 and 2 dimensional. Each column is
an element Kjisr of the basis, while each row is an output
channel. i = 1 always and, since ρ0 ⊗ ρJ = ρJ , j = J .

ρJ=2.6 Hence, the kernels have form, respec-
tively, K0 : S1 → R1×1, K1 : S1 → R2×1

and K2 : S1 → R2×1. ρ0 ⊗ ρJ = ρJ , so we
always have j = J and s = 1. Additionally,
any 2-dimensional irrep ρj (j > 0) of SO(2)
has a 2-dimensional endomorphism space
spanned7 by cjr=0 =

[
1 0
0 1

]
and cjr=1 =

[
0 1
−1 0

]
.

This can be verified visually: in Fig. 3b
and 3c, the second column is obtained by
swapping the rows of the first and by chang-
ing the sign of the second row.

Example 2: C4-Steerable Kernels In Fig. 4,
we show the basis for G = C4 steerable kernels described by Theorem 2.1, using the C4-steerable
basis generated by Eq. 5 from the circular harmonics basis B′ used for G′ = SO(2) in the previous
example. ρj occurs in a restricted representation Res

SO(2)
C4

ρj′ whenever j′ = |j+4k|, k ∈ Z. Indeed,
the basis prescribed in Eq. 5 has infinitely many elements, but each element is associated with a
circular harmonic of a specific frequency j′. It is natural to use only a band-limited finite subset of
this basis: Fig. 4 shows only frequencies up to j′ = 4. If j = 0 or j = 2 and j′ = |j + 4k| > 0, ρj is
1-dimensional but ρj′ is 2-dimensional, so ResG

′

G ρj′ contains two copies of ρj and t ∈ {1, 2} (see
j′ = 2 or 4 in Fig. 4a). We use the trivial irrep l = 0 in the input and J ∈ {0, 1, 2} in the output. ρj=1

has a 2-dimensional space of endomorphisms, spanned by the same basis described in the SO(2)
example above, so r ∈ {1, 2} in this case. Note that the parametrization in Fig. 4 is continuous along
the ring and does not suffer from the discretization issue in Fig. 1b.

j ′=0,r=1
t=1

j ′=4,r=1
t=1

j ′=4,r=1
t=2

(a) J = 0

j ′=1,r=1
t=1

j ′=1,r=2
t=1

j ′=3,r=1
t=1

j ′=3,r=2
t=1

(b) J = 1

j ′=2,r=1
t=1

j ′=2,r=1
t=2

(c) J = 2

Figure 4: Basis for G = C4-steerable kernels as in Eq. 4 using a steerable basis B built from circular harmonics
using Eq. 5. ρin = ρl=0, while ρout = ρJ for J ∈ {0, 1, 2}, which are 1, 2, and 2 dimensional. Each column is
an element Kj(j′i′t′)sr of the basis, while each row is a different output channel. Since ρ0 ⊗ ρJ = ρJ , j = J ;
for circular harmonics, i′ = 1. We require G = C4 equivariance, so a frequency j′ = 4 filter is invariant to G;
analogously, the output of frequency j′ = |j+4k| filters (k ∈ Z) transforms like the output of a frequency j one.

3 IMPLEMENTATION DETAILS

Given the theoretical results described in the previous sections, we now describe the steps and inputs
required to build new G-steerable kernels. See Algorithm 1 for a summary. Theorem 2.1 relies on:
a) the irreps Ĝ = {ρj}j , b) a G-steerable basis B = {Yji}ji for L2(X), c) the decomposition ρl ⊗
ρJ = [CGlJ ]T

(⊕
j∈Ĝ

⊕[j(lJ)]
s=1 ρj

)
CGlJ , and d) a basis {cjr}r for the endomorphism space of ρj .

Optionally, B can be generated via Eq. 5 using e) a larger groupG′ and its irreps Ĝ′ = {ρj′}j′ , f ) aG′-
steerable basis B′ = {Yj′i′}j′i′ and g) the decomposition ResG

′

G ρj′ = [IDj′ ]T
(⊕

j∈Ĝ
⊕

t ρj
)

IDj′ .

The irreps of G in a) are the main requirement: they allow us to build arbitrary representations (via

6For θ∈ [0, 2π), ρ0 :θ 7→1 is the trivial irrep; if k>0, ρk maps θ to the 2×2 rotation matrix of k · θ radians.
7One can verify that any linear combination of these two matrices commutes with any 2× 2 rotation matrix.
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Algorithm 1 Generate G-Steerable basis on space X

Require: ρin = ρl and ρout = ρJ , G′-steerable basis B′ = {Yj′i′}j′i′ , Ĝ = {ρj}j and Ĝ′ = {ρj′}j′
1: {cjr}r ← basis for endomorphism space of ρj , for all ρj . Appendix C
2: CGlJ , {[j(lJ)]}j ← decompose(ρl ⊗ ρJ) . Appendix E
3: for all Yj′i′ ∈ B′ do
4: IDj

′
, {[jj′]}j ← decompose(ResG

′
G ρj′) . Appendix E

5: for all j ∈ Ĝ : [jj′] > 0, s ≤ [j(lJ)], t ≤ [jj′], cjr ∈ {cjr}r do
6: Yj(j′i′t)(x)← IDjj

′

t ·Yj′i′(x) . Equation 5

7: Kj(j′i′t)sr(x)← unvec
(
[CG

j(lJ)
s ]T · cjr · Yj(j′i′t)(x)

)
. Theorem 2.1

8: yield Kj(j′i′t)sr

direct sum) and reduce the kernel constraint to the form in Sec. 2.2 by decomposing the input and
output representations. If B in b) is unknown, one can rely on Eq. 5. A convenient choice for G′ in e)
is a group whose irreps Ĝ′, together with a steerable basis B′ as in f ), are known. G′ = O(n) is always
possible if X = Rn, and B′ is built via polar decomposition of Rn and by combining hyper-spherical
harmonics with a radial basis. Like Worrall et al. (2017); Weiler et al. (2018b;a), we use Gaussian
radial profiles8. In Sec. 5, this choice of G′ allows easily experimenting with multiple subgroups
G ≤ O(3), without the overhead of identifying each G’s orbits or designing ad-hoc G-steerable
bases. Note also that band-limiting is achieved by modifying B′ and is independent from G. Other
G′’s orbits can also be used, combining harmonic bases (see Appendix D) with a Gaussian kernel.

The irreps decomposition of ρl ⊗ ρJ in c) provides the multiplicity [j(lJ)] of each irrep ρj and the
matrices CGj(lJ)

s . Similarly, the irreps decomposition of ResG
′

G ρj′ in g) provides the multiplicity of
eachG-irrep ρj in eachG′-irrep ρj′ and the projection matrices IDjj′

t . Knowing these decompositions
a-priori for any l, J and j′ is generally difficult, but they can be easily computed numerically; see
Appendix E. Finally, d) requires a basis {cjr}r for the endomorphism space of each ρj ∈ Ĝ. This can
be computed numerically, but is often unnecessary; see Appendix C. In summary, if X = Rn and
G′ = O(n), implementing new G-steerable CNNs only requires knowing the irreps Ĝ: by knowing
the action of G on Rn, one implicitly knows its embedding into O(n) and, therefore, can apply Eq. 5.

Practical Example and Experiments In Sec. 5.3, we implement a variety of subgroups of the
isometries of R3 (see Appendix G). To do so, we choose G′ = O(3) and B′ is built by combining
spherical harmonics with a Gaussian radial profile. Since irreps are used to define the types of the
feature fields, we need the irreps of SO(3), O(2), SO(2), CN , I and O. Direct product groups such
as Inv×SO(2) are built as in Appendix F. Since there are generally multiple subgroups G < O(3)
isomorphic to the same abstract group (e.g. see O(2) in Tab. 1), for each G, we explicitly define
its isomorphism with an abstract group; this enables the automatic restriction of G′’s irreps and the
numerical computation of the IDjj′

t matrices. The matrices CGj(lJ)
s are also computed numerically.

Limitations Our choice of B′ implies we only parameterize filters supported on a compact ball,
which is slightly more restrictive than the usual parameterization of filters with support on a cube. For
a fixed kernel size, an ad-hoc implementation of G-steerable filters can exploit a larger initial basis,
potentially leading to some performance gain (e.g. C4 allows filters supported on a square rather
than a disk). However, if an ad-hoc implementation of G′ < O(n) steerable kernels is available, our
method can be used to construct G ≤ G′ steerable spaces by using the G′-steerable basis rather than
the O(n)-steerable one. Comparing the effect of different B′ on the performance of a G-steerable
CNN is beyond the scope of this paper, which instead focuses on building a method suitable for anyG.

4 RELATED WORKS

Similar in spirit to our work is the e2cnn library (Weiler & Cesa, 2019), although limited to X = R2

and G ≤ O(2). G′ = O(2) recovers their solutions. Geiger et al. (2020) present a library implement-
ing general 3D steerable CNNs, but limited to the choices G = SO(3) or O(3). In comparison, we
currently support both 2D and 3D convolution and any compact group G ≤ O(3) (including discrete

8Other radial profiles are suitable as well without any substantial difference in our theory. The Gaussian
profile is chosen mostly for presentation and implementation convenience.
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and planar subgroups acting on R3), and other spaces X can be potentially integrated. Finzi et al.
(2021) propose a numerical method to parameterize (finite dimensional) MLPs that are equivariant
to arbitrary matrix groups. Their numerical method to compute a basis of equivariant linear maps
resembles our irreps decomposition method; see Appendix E. Bekkers (2020) and Finzi et al. (2020)
implement group convolution on Lie groups using a finite number of samples from the continuous
group. This is similar to our SO(3) or O(3) architectures with pointwise non-linearities; see Sec. 5.1.
However, since our features and filters are explicitly parametrized on a band-limited space, we can
adapt the sampling set to control the equivariance error caused by this approximation.

Aronsson (2021) previously discussed bandlimited convolution operators in equivariant CNNs. Jenner
& Weiler (2022) generalize Euclidean steerable CNNs to partial differential operators. (Cohen et al.,
2019b; Kondor & Trivedi, 2018; Bekkers, 2020) define steerable CNNs on homogeneous spaces.
G-steerable kernels are necessary to implement gauge equivariant CNNs on general manifolds (Weiler
et al., 2021; Cohen et al., 2019a; Kicanaoglu et al., 2019; Haan et al., 2021). Li et al. (2021) use
transformed filters to parameterize steerable kernels. Previously, Mallat (2012); Oyallon & Mallat
(2015); Sifre & Mallat (2013) described similar architectures based on scattering. Brandstetter et al.
(2021) use a non-linear parameterization of steerable convolution in a geometric graph.

5 INSTANTIATION OF THE METHOD AND EXPERIMENTS

We demonstrate the generality of our method by instantiating steerable CNNs for different groups G.
We will mostly focus on R3 and its isometries; Appendix G briefly summarizes the subgroups used.
Sec. 5.1 discusses existing and new design choices for 3D steerable CNNs. We then compare these
designs in Sec. 5.3. Sec. 5.2 numerically compares our steerable basis with alternative bases.

5.1 DESIGN CHOICES OF 3D STEERABLE CNNS

AG-steerable CNN design involves a choice of feature field types, i.e. G representations acting on the
channels of the features, see Sec. 2.1. The chosen types constrain the non-linear operations permitted.

Many works in the literature focus on designs which achieve perfect SO(3) equivariance (Weiler
et al., 2018b; Thomas et al., 2018; Anderson et al., 2019) . To ensure this, a common choice is the use
of irreps feature types and gated non-linearities. This operation combines a feature field fρ(x) ∈ Rdρ
of type ρ with a gate f0(x) ∈ R as fρ(x) 7→ σ(f0(x))fρ(x), where σ is a sigmoid function and f0 is
feature field of trivial type. This non-linearity is equivariant to any G but Weiler & Cesa (2019) found
them to perform worse than point-wise non-linearities like those used in GCNNs. Another popular
choice is using the tensor product of two feature fields as a non-linear operation (Kondor et al., 2018),
i.e.

(
fρi(x), fρj (x)

)
7→ fρi(x) ⊗ fρj (x). However, this non-linearity is quadratic and turns the

network into a polynomial function of the input, which can lead to training difficulties (Anderson et al.,
2019). Additionally, computing the tensor product ⊗ has computational and memory cost O(dρidρj );
it is common to project the output features to a smaller feature field through a learnable linear map.
A different approach is used in Worrall & Brostow (2018); Winkels & Cohen (2018), which use the
octahedral group O on voxelized data. The finiteness of the group allows for a simple GCNN (Cohen
& Welling, 2016a) architecture, corresponding to the choice of the regular representation ρreg as the
feature type and standard pointwise non-linearities (e.g. ReLU). The representation ρreg of a group
G acts on feature vectors in R|G| by permutations and a vector in this space can be interpreted as a
scalar function over G; see Weiler & Cesa (2019) for an intuitive description.

Because SO(3) (and O(3)) has only a limited number of discrete subgroups, we also consider
discretizations without group structure. We interpret a feature vector f(x) ∈ RB as the coefficients
parameterizing a band-limited function overG in Fourier space; see Appendix D. To apply a pointwise
non-linearity σ : R → R (e.g. ELU) on f(x), we i) sample the parameterized function on a finite
set G ⊂ G, ii) apply σ and, then, iii) recover the coefficients f ′(x) of the output via a Fourier
transform. If σ is smooth, the output signal is still approximatively band-limited but can contain
higher frequencies than the input f(x). This implies that a larger set G is required to reconstruct f ′(x)
than for f(x). If a fixed budget of channels (i.e. number of samples |G|) is available for a non-linear
module, the input field f(x) must be strongly bandlimited. While this can reduce the expressiveness
of the model’s features, it also implies that linear layers are computationally cheaper as they operate
on smaller number of channels. A similar result was leveraged in Cheng et al. (2019) for G = SO(2).
This regular non-linearity was also used in Kicanaoglu et al. (2019) for G = SO(2). The same
approach can be generalized to quotient fields, i.e. feature fields which parameterize functions over
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Table 1: Rotated ModelNet10 (O(3) symmetry). ∗ indicates wider models to fix the computational cost.

G Description Accuracy

{e} Conventional CNN 82.5± 1.4
SO(2) Axial Symmetry 86.9± 1.9
SO(2)o F ∼= O(2) Dihedral Symmetry 87.5± 0.7
SO(2)oM ∼= O(2) Conical Symmetry 88.5± 0.8
Inv×SO(2) Cylindrical Symmetry 86.8± 0.7
Inv×SO(2)o F Full Cylindrical Symmetry 87.0± 1.0
O Octahedral Symmetry (Winkels & Cohen, 2018) 89.7± 0.6
I Icosahedral Symmetry 90.0± 0.6
I Icosahedral Symmetry (finite orbits basis) 88.2± 1.0
SO(3) Chiral (Tensor product) (Anderson et al., 2019) 86.3± 1.0
SO(3) Chiral (Gated non-linearity)(Weiler et al., 2018b) 88.8± 1.2
SO(3) Chiral (Regular, |G| = 96) 89.1± 1.2
SO(3) Chiral (Regular, |G| = 192)* 89.4± 1.4
SO(3) Chiral (Quotient S2 = SO(3)/ SO(2), |X | = 30) 89.5± 1.0
O(3) Achiral (Regular, |G| = 120) 89.2± 0.6
O(3) Achiral (Regular, |G| = 144)* 89.4± 0.7
O(3) Achiral (Quotient Inv×S2 = O(3)/SO(2), |X | = 60) 88.6± 0.9

a quotient space X = G/H (e.g. S2 = SO(3)/SO(2)). See Appendix H.2 for more details on
point-wise non-linearities and their computational benefit.

5.2 NUMERICAL COMPARISON OF STEERABLE BASES

In this section, we compare our basis with one built according to Lang & Weiler (2020). We
consider the example of Icosahedral I steerable 3D convolution. Our basis is composed by a
band-limited set of spherical harmonics per spherical shell, combined as in Theorem 2.1. The
two baselines use respectively the center of the 20 faces of the dodecahedron and the 12 faces
of the icosahedron embedded in each shell as orbits and parameterize the kernel along each
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Figure 5: Histograms of relative equivariance errors
of three different Icosahedral I-steerable bases. The
first two parameterize two different orbits of I while
the third uses our basis based on spherical harmonics.

orbit directly using (Lang & Weiler, 2020). Fig. 5
shows the histograms of the equivariance errors
of the three bases with respect to the Icosahedral
group; each point represents an element of the ba-
sis and the errors are averaged all transformations;
see Appendix H.1. Our basis shows significantly
higher stability. Finally, we study the effect of
these bases on a model’s performance. In Tab. 1
we compare two I-equivariant models: one using
our harmonic basis and one using the 20 faces of
the Icosahedron as orbit. Our anti-aliased basis
leads to a significant improvement in accuracy.

5.3 EXPERIMENTS

To emphasize our method is not limited to R3, we include a simple experiment with 2D images. In the
rest of the section, we compare different model designs on two volumetric datasets: ModelNet10 (Wu
et al., 2015) (and a rotated version of it) and LBA (Townshend et al., 2020). For each model, we
run a simple search over hyperparameters and minor variants of the designs described in Sec. 5.1
using validation accuracy, to ensure a fair comparison. Unless specified, within a task, all models
approximatively share the same width. In particular, in all tasks, the models which more closely match
the symmetries of the data perform the best. See Appendix H for more details on the experiments.
The equivariance groups used (column G in the tables) are described in Appendix G.

Rotated MNIST As a simple 2D experiment, we train a conventional CNN and aG = C8 equivariant
CNN on rotated MNIST. The steerable kernel bases are similar to those in Weiler & Cesa (2019) and
we use regular field types with pointwise ELU. The conventional model achieves 96.3 ± 0.1 test
accuracy while the C8 equivariant one 96.7± 0.4.

Rotated ModelNet10 We generate a voxelized version of ModelNet10 with resolution 33px by
sampling 3 random SO(3) rotations for each object. During training, we use rotations from O for

8
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augmentation. In Tab. 1, we compare different equivariance groups and different equivariant designs.
It includes our implementation of some relevant related works; see Sec. 5.1. We first highlight the
large margin between all equivariant networks and the conventional CNN. SO(3) and O(3) models
achieve better performance than the other continuous subgroups. The best results are achieved by
using the discrete groups I and O or the SO(3) model with spherical quotient feature types. Recall
also that the models with quotient or regular non-linearities are computationally cheaper; see Sec.5.1.

Table 2: ModelNet10 (O(2) symmetry)

G Description Accuracy

{e} Conventional CNN 91.2± 0.5
SO(2) Azimuthal Symmetry 91.9± 0.8
SO(3) Chiral (Regular, |G| = 72) 89.8± 0.6
O(2) Full Azimuthal Symmetry 92.3± 0.4
O(3) Achiral (Regular, |G| = 120) 89.9± 1.0
C2oF Klein Group (dihedral symmetry) 91.0± 0.6

VOXNet (Maturana & Scherer, 2015) 92.0
C2oF Klein Group (Worrall & Brostow, 2018) 94.2

ModelNet10 To experiment with data with
only axial and mirror symmetries, we gen-
erate a version of ModelNet10 by sampling
the random rotations only around the Z
axis. π2 rotations and reflection augmenta-
tion in the XY plane is used for training
but no rotation averaging is used for test-
ing. The final accuracies are in Tab. 2. The
models equivariant to 3D rotations are out-
performed by the SO(2) and O(2) models,
which better match the data symmetries.

Ligand Binding Affinity (LBA) regression We also evaluate our models on a regression task using
the LBA dataset (Townshend et al., 2020), containing protein-ligand complexes from the PDBBind
database (Wang et al., 2004; Liu et al., 2014). In Townshend et al. (2020), an SO(3)-equivariant
model with tensor product activations performed the best, despite its cost prevented training on the
full dataset. We propose a volumetric SO(3) network with a computational cost equivalent to a
conventional CNN by leveraging the benefit of regular non-linearities. Tab. 3 reports our results.

Discussion We again emphasize that the purpose of our experiments is mostly demonstrating the
generality and flexibility of our program, but we do not necessarily envision applications of all
subgroups G < O(3) considered. Still, some subgroups are practically relevant; indeed, models with
azimuthal symmetry perform the best in Table 2 where the data lacks full rotational symmetry. Here,
enforcing SO(3) equivariance results in over-constrained models which are not sufficiently expressive
and are outperformed even by the conventional CNN. Overall, we observe models whose symmetry
matches the data tend to perform the best. Some discrete subgroups, e.g. the platonic ones, constitute
a special exception: they approximate the full rotational symmetry but are less restrictive than a fully
rotation equivariant model, sometimes better matching the approximate symmetry of voxelized data.
Finally, we only found minor differences among the various SO(3) models, although regular and
quotient non-linearities stood out for their reduced computational cost (see also Appendix H.7).

6 CONCLUSIONS

In this work, we gave a general characterization of G-steerable kernel spaces over an arbitrary space
X and proposed a general strategy to automatically parameterize them based only on G’s irreps. This
enabled us to implement steerable CNNs equivariant to a variety of new groups G ≤ O(3), which we
compare in an exploratory study in our experiments. Finally, we believe that Theorem 2.1 suggests a
new theoretical perspective on the construction of equivariant CNNs, reducing the problem to that of
devising a suitable starting basis B, regardless of the choice of feature types in the model.

Table 3: Ligand Binding Affinity dataset. ∗ indicates wider models to fix the computational cost.

G Description RMSD Pearson Spearman

{e} Conventional CNN 1.419± 0.047 0.575± 0.022 0.569± 0.021
O Octahedral Symmetry 1.417± 0.032 0.589± 0.010 0.581± 0.011
I Icosahedral Symmetry 1.432± 0.020 0.569± 0.023 0.559± 0.023
SO(3) Chiral (Regular, |G| = 72) 1.397± 0.039 0.580± 0.021 0.573± 0.022
SO(3) Chiral (Regular, |G| = 60)* 1.380± 0.033 0.588± 0.015 0.578± 0.018
SO(3) Chiral (Quotient S2, |X | = 24) 1.405± 0.028 0.582± 0.018 0.576± 0.016
SO(3) Chiral (Quotient S2, |X | = 30)* 1.385± 0.032 0.587± 0.019 0.576± 0.019

{e} 3DCNN (Townshend et al., 2020) 1.520 0.558 0.556
{e} Graph-NN (GNN) (Townshend et al., 2020) 1.936 0.581 0.647
SO(3) E-GNN (Townshend et al., 2020) 1.429 0.541 0.532
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we include a dedicated section in Appendix H to describe our experiments
in more details. Moreover, we implemented all the methods described in this work in a Python library
which can be found at github.com/QUVA-Lab/escnn. We also plan to publish the code used
to run our experiments.

POSSIBLE NEGATIVE SOCIETAL IMPACTS

Since this work is very foundational, many different negative societal impacts are conceivable. In
particular, any misuse which is eased by improved computer vision systems can profit from this and
similar work. Of course, we cannot discuss them all.

Nevertheless, we want to highlight one specific misuse which seems likely to occur for the field of
equivariant deep learning in the future – namely, the adoption in lethal autonomous weapons systems
(LAWS). We can easily think of drones using spherical vision which would profit from equivariant
CNNs. In particular, since they have a fixed vertical orientation, but arbitrary horizontal orientation,
they could profit from spherical CNNs using azymuthal symmetries.

It is important to realize that the mitigation of such misuses cannot happen at the level of individual
research projects. Instead, what is needed is a global effort to mitigate the misuse of AI systems
for LAWS in general. Fortunately, the broader AI community agrees that AI should not be used in
LAWS, and that international regulations are necessary to prevent their use in the future aut (2015).
We hope that efforts in this direction are continued.
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In the Appendix, we provide a more detailed description and the proof of the theoretical results
mentioned in the main paper. We first give a brief overview of the representation theory of compact
groups and introduce the notation we will use throughout the next chapters in Section A. In Section B,
we state more precisely and prove the main result from Sec. 2.2, which we used to parametrize
the steerable filters. In particular, we state both a complex and a real version of Theorem 2.1. In
section B.4, we discuss two examples of kernel bases. Sections C, D, E and F provide additional
theoretical results and computational methods which can ease the practical implementation of
steerable CNNs, but are not necessary for understanding our main results.

Because the implementation of steerable CNNs is necessarily using real numbers, its design should
rely on the real representation theory of the group considered. In Section C, we review the theory of
real irreducible representations and derive some useful results to deal with these representations in
the implementation. Notably, we show that, for a compact group G, any real irrep of G can always be
expressed in a particular basis which allows one to recover a harmonic basis for square-integrable
functions over G from the matrix coefficients of the irreps. The results shown in Section C will
become useful in Section D, E and F.

Regular, quotient and induced features types encode scalar or vector functions over a homogeneous
space of G in terms of a harmonic basis. Moreover, harmonic bases provide a simple way to generate
the G-steerable bases required to define the kernel basis in Sec. 2.2: by leveraging the fact that orbits
of G in X are isomorphic to homogeneous spaces, the harmonic bases for the orbits of G in X can
be combined with a Gaussian kernel to generate G-steerable bases over X . In Section D, we derive
a method to compute the (either real or complex) harmonic basis for any homogeneous space of
G from the harmonic basis of functions over G. The method described in Section D turns out to
be more general and also supports vectors fields over homogeneous spaces, i.e. general induced
representations of G.

Since the kernel parameterization in Sec. 2.2 relies on the irreps decomposition of the input and
output representations, of the tensor product of irreps (to compute the Clebsh-Gordan coefficients
CG) and of the restricted irreps of G′ (to compute the ID coefficients), the ability to decompose
an arbitrary representation is essential to apply our method in a fully general setting. Therefore, in
Section E, we describe a numerical method to perform this decomposition for real representations.

As explained in Sec. 3, the main (and, often, only) requirement to apply our method to a new group
G is the knowledge of its irreps Ĝ. A simple operation which can be used to generate new groups is
the direct product × of two groups. Examples of direct product groups include many subgroups of
O(3) that we used in Sec. 5. In Section F, we describe a method to derive the real irrep of a direct
product group G = A×B from the real irreps of the two subgroups A and B.

Section H includes additional details on the experimental results reported in Sec. 5. In particular, we
describe in more details the different equivariant designs, the architectures used, the datasets and the
training and testing configurations.

A PRELIMINARIES ON THE REPRESENTATION THEORY OF COMPACT GROUPS

In this section, we collect many notions and concepts which we need throughout the appendix for the
development of the theory. This section assumes some familiarity with the representation theory of
compact groups and is meant as a reminder. For readers with no background in representation theory,
we can recommend the appendix of Lang & Weiler (2020).

We will use K to denote any of the two fields R or C, i.e., we develop the theory in such a way that it
covers both real and complex representations. Whenever we deviate from this assumption, we will
say so explicitly.

Throughout, let furthermore G be any compact group.

A.1 BASICS OF (UNITARY AND IRREDUCIBLE) REPRESENTATIONS

Linear representations are (in a certain sense continuous) group homomorphisms ρ : G→ GL(V )
for some topological K-vector space V . In our applications, V always carries a scalar product 〈·|·〉
which induces its topology, and which we always assume to be conjugate linear in the first component,
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and linear in the second component. The pair (V, 〈·|·〉) is assumed to be a Hilbert space, meaning
that the scalar product makes V a complete metric space. Note that, as is typical in a physics context,
we freely make use of the Bra-Ket convention, and thus for example view 〈v| as a linear functional
which maps |w〉 := w to 〈v | w〉. By the Riesz representation theorem, there are no other continuous
linear functionals.

Unitary representations are linear representations ρ : G → U(V ) ⊆ GL(V ), where U(V ) is the
unitary group of V . This is the group of unitary transformations on V , i.e., linear functions on V
which preserve the scalar product, and thus distances. Whenever we explicitly assume K = R, we
will write O(V ) instead of U(V ), which is the group of orthogonal transformations on V , and the
representations are then called orthogonal instead of unitary.9

We will denote the set of isomorphism classes of all irreducible unitary representations (irreps) ofG as
Ĝ. Thereby, irreducible representations are representations which cannot be decomposed nontrivially
into subrepresentations. We usually write indices j, l, J ∈ Ĝ to indicate such isomorphism classes,
and then, e.g., ρj : G → U(Vj) to denote a representative of such an isomorphism class. We set
dj := dimVj as the dimension of the representation spaceDof Vj . Whenever we consider only one
irrep, we may also, by abuse of notation, write ρ ∈ Ĝ to indicate (a representative of an isomorphism
class) of an irrep of G.

We now collect definitions which we use throughout.

Definition A.1 (Homomorphisms/Intertwiners). Let ρV : G→ GL(V ) and ρW : G→ GL(W ) be
two linear representations. The space of homomorphisms, also called intertwiners, HomG,K(V,W ),
consists of all linear, continuous functions f : V →W which commute with the two representations,
i.e., f ◦ρV (g) = ρW (g)◦f for all g ∈ G. We write for this space also HomG,K(ρV , ρW ), depending
on whether we want to emphasize the representation spaces or the representations.

Definition A.2 (Equivalences and Isomorphisms). Let ρV : G→ GL(V ) and ρW : G→ GL(W )
be two linear representations. An intertwiner f : V → W is called an equivalence if there is an
intertwiner g : W → V such that g ◦ f = idV and f ◦ g = idW . ρV and ρW , or also V and W , are
then said to be equivalent.

If ρV and ρW are even unitary representations, and f and g additionally are unitary transformations,
i.e., preserve the scalar product and thus distances, then V andW or ρV and ρW are called isomorphic,
and f and g isomorphisms. We write this as ρV ∼= ρW or V ∼= W , depending on whether we want to
emphasize the representations or the representation spaces.

Definition A.3 (Endomorphisms, Endomorphism Basis). Let ρ : G→ GL(V ) be a linear represen-
tation. The space of endomorphisms EndG,K(V ) consists of all linear, continuous maps c : V → V
that commute with ρ, i.e., c ◦ ρ(g) = ρ(g) ◦ c for all g ∈ G.

For ρ = ρj being an irrep, this space is finite-dimensional and Das a basis (the endomorphism basis)
(cjr)

Ej
r=1 with Ej = dim (EndG,K(Vj)).

Note that EndG,K(Vj) = HomG,K(Vj , Vj).

By Schur’s Lemma, the endomorphism spaces of complex irreps are always 1-dimensional, generated
by the identity. For real representations, they can be 1, 2, or 4-dimensional, and the irrep is then
correspondingly called of real type, complex type, or quaternionic type. See Supplementary C for
more details on real representations.

A.2 HOMOGENEOUS SPACES, SQUARE-INTEGRABLE FUNCTIONS, AND THE PETER-WEYL
THEOREM

Recall that a homogeneous space of the compact group G is a topological (Hausdorff) space X
together with a transitive continuous action . : G×X → X , (g, x) 7→ g.x = gx.

As is commonly known, G carries an inversion-invariant and left-right invariant so-called Haar-
measure µ, which can furthermore be assumed to be normalized: µ(G) = 1. This Haar measure also

9But note that in the general case of unspecified field K, we always speak of unitary representations, by
which we just mean “orthogonal” in the case K = R
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induces a corresponding G-action invariant measure ν on X , which we also call Haar-measure and
assume to be normalized: ν(X) = 1.

The normalization makes both Haar-measures the unique measures which are defined on the whole
Borel Sigma algebras of these spaces and satisfying the mentioned invariance properties. To reduce
clutter, we will mostly not mention the used measure in integral-formulas, but we view it as understood
that all integrals are with respect to these unique Haar measures.

Fix from now on a homogeneous space X of G.
Definition A.4 ((The Space of) Square-Integrable Functions). A square-integrable function f : X →
K is a measurable function with the property that the square of its absolute value is integrable:∫
X
|f(x)|2dx <∞.

We denote the space of all such square-integrable functions by L2
K(X). It carries a scalar product

given by 〈f | g〉 =
∫
X
f(x)g(x)dx, making it a Hilbert space. It also carries a unitary representation

of G given by λ : G→ U(L2
K(X)), (λ(g)f)(x) := f(g−1x).

Definition A.5 (Regular Representation). In the case that X = G is the group itself, we call L2
K(G),

together with the action [λ(g)f ](g′) := f(g−1g′), the regular representation of G.
Theorem A.6 (Peter-Weyl Theorem). There is a decomposition

L2
K(X) =

⊕̂
j∈Ĝ

mj⊕
i=1

Vji

into irreducible subrepresentations. Thereby, Vji is isomorphic to the representative irreducible
representation Vj and generated by orthonormal harmonic basis functions Y mji : X → K. We have
mj ≤ dj := dimVj . If D=C and X = G, then mj = dj .

Note that the hat (̂·) denotes a topological closure. It is a technicality which the reader can mostly
ignore without problems.
Proposition A.7 (Peter-Weyl Theorem: An Explicit Basis for Complex-Valued Square-Integrable
Functions on a Compact Group). In the complex field K = C, the orthonormal harmonic basis for
L2
C(G) is given explicitly by:

Y mji (g) =
√
dj〈ρj(g)ei|em〉 =

√
dj [ρj(g)]mi =

√
dj [ρj(g

−1)]im

In other words, the matrix coefficients of the complex irreps of G form an orthogonal basis for L2
C(G).

Definition A.8 (Harmonic Projections). We denote the orthogonal projection from L2
K(X) to the

i’th copy of Vj by pji : L2
K(X)→ Vj . On the harmonic basis, it is given by

pji
(
Y m̃
j̃ĩ

)
= δjj̃δĩi · |jm̃〉,

which just follows from the fact that the harmonic basis functions form an orthonormal basis of
L2
K(X), which is then mapped to the corresponding orthonormal basis of Vj , the representation space

of the representative irrep ρj : G→ U(Vj).

One commonly known corollary of the Peter-Weyl theorem is the following. We make use of it in the
definitions of the Clebsch-Gordan coefficients and irrep-decomposition coefficients which we define
in the next two subsections:
Corollary 1. Any unitary representation of G, even infinite dimensional, can be decomposed into a
(topological closure of a) direct sum of irreps of G with a unitary isomorphism, i.e.: for all unitary
representations π : G→ U(V ) of G, there exists a unitary transformation M : V →

⊕̂
i∈IVi, where

ρi : G→ U(Vi) are unitary irreducible representations such that for all g ∈ G the following identity
holds:

π(g) = M−1

(̂⊕
i∈I

ρi(g)

)
M .

I is a set indexing irreps in Ĝ, and the same irrep may occur multiple times. If such an M exists, we
also write V ∼=

⊕̂
i∈IVi.
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That M is a unitary transformation means, as explained earlier, that it preserves the scalar product
and thus distances. Consequently, one has M−1 = M†, i.e., the inverse is equal to the adjoint10. In
the finite-dimensional case, and working with matrices, one has that M† is given by the conjugate
transpose of M , and if we additionally consider real-valued representations, then M† = MT is just
the transpose.

A.3 CONSTRUCTING UNITARY REPRESENTATIONS FROM OTHERS AND THEIR RELATIONS

Now we come to tensor-products and Clebsch-Gordan coefficients. Recall that given two finite-
dimensional unitary representations ρV : G → U(V ) and ρW : G → U(W ), one can define a
unitary representation ρV ⊗ ρW : G→ U(V ⊗W ) called tensor product given by (ρV ⊗ ρW )(g) =
ρV (g)⊗ ρW (g) : v⊗w 7→ [ρV (g)] (v)⊗ [ρW (g)] (w). Thereby, V ⊗W is the tensor product of the
vector spaces V and W . If V and W have bases {v1, . . . , vn} and {w1, . . . , wm}, respectively, then
the tensor product has a basis {vi ⊗ wj | i = 1, . . . , n, j = 1, . . . ,m}. Correspondingly, represented
with respect to given bases, the matrix corresponding to ρV (g)⊗ ρW (g) is the Kronecker product of
the matrices corresponding to ρV (g) and ρW (g). The scalar product on the tensor product is given by
〈v ⊗ w | v′ ⊗ w′〉 = 〈v | v′〉 · 〈w | w′〉. The tensor product V ⊗W has a universal property which
relates bilinear functions on V ×W to linear functions on V ⊗W .

Recall that for an irrep ρj : G→ U(Vj), dj denotes the dimension of Vj .
Definition A.9 (Clebsch-Gordan Coefficients). Let ρl : G → U(Vl) and ρJ : G → U(VJ) be
irreducible unitary representations of G. There is a decomposition

Vl ⊗ VJ ∼=
⊕
j∈Ĝ

[j(lJ)]⊕
s=1

Vj

of the tensor product in irreps, where [j(lJ)] is the multiplicity of Vj in Vl ⊗ VJ . This multiplicity is
zero for all but finitely many j ∈ Ĝ. We denote the coupling coefficients between basis elements
coming from this decomposition by 〈s, jm|ln; JM〉, where m ≤ dj , n ≤ dl, M ≤ dJ and
s ≤ [j(lJ)]. They are called the Clebsch-Gordan coefficients.
Remark A.10. The main application of the tensor product will be in the Wigner-Eckart theorem
which we state in Section B, where ρj will be the irrep corresponding to harmonic basis functions on
a homogeneous space, ρl will be the input representation, and ρJ will be the output representation.
Compared to the work Lang & Weiler (2020), this means that we will decompose Vl ⊗ VJ instead of
Vj ⊗ Vl, which leads to a simpler implementation for real representations, the case we are concerned
with, at the cost of the necessity to invoke dual representations in the case that one works with
complex representations.

The definition of these coefficients can be made more explicit by invoking the corresponding projec-
tions and embeddings, which we will use in the proof of our adapted Wigner-Eckart Theorem. We
thereby define |ln〉, n ≤ dl, as the n’th basis vector in Vl, for a fixed basis, and similarly for |jm〉
and |JM〉.
Definition A.11 (Clebsch-Gordan Projections and Embeddings). We denote the projection from
Vl ⊗ VJ to the s’th copy of Vj by CGj(lJ)

s : Vl ⊗ VJ → Vj . It has as matrix elements the Clebsch-
Gordan coefficients for fixed s, j, l, J :

〈s, jm | ln; JM〉 =
〈
jm
∣∣∣CGj(lJ)

s

(
|ln〉 ⊗ |JM〉

)〉
. (6)

Dually, we denote the embedding of the s’th copy of Vj into Vl ⊗ VJ by ij(lJ)
s : Vj → Vl ⊗ VJ . It

relates to the Clebsch-Gordan coefficients as follows:

〈s, jm|ln; JM〉 =
〈
ij(lJ)
s (|jm〉)

∣∣ln; JM
〉
. (7)

Note that this definition of Glebsh-Gordan coefficient is compatible with the one in Sec. 2.2, for
real representations. Indeed, in Sec. 2.2, CGj(lJ)

s denotes the matrix of Clebsch-Gordan coefficients
〈s, jm̃|lm; JM〉 of shape dj × (dl · dJ).

10The adjoint of a continuous linear operator f : V → W between Hilbert spaces is defined as the unique
continuous linear operator f† :W → V satisfying 〈f(v) | w〉 = 〈v | f†(w)〉 for all v ∈ V and w ∈W .
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For a Hilbert space V , we set V † as the space of continuous linear functionals on V . As mentioned
above, by the Riesz representation theorem these linear functionals are given by all v† := 〈v| for
v ∈ V . V † is then also a Hilbert space with the scalar product given by

〈
v†|w†

〉
= 〈w|v〉.11 This

definition of a dual can be extended to a dual of unitary representations:
Definition A.12 (Dual Representation). Let ρ : G→ U(V ) be a finite-dimensional unitary represen-
tation. Then we can define the dual representation ρ† : G→ U(V †) as follows:

[ρ†(g)](v†) := v† ◦ ρ(g−1) : V → K. (8)

If ρl : G → U(Vl) is a finite-dimensional irreducible representation, then we write Vl† := (Vl)
†

and (ρl)
† := ρl† for a new auxiliary label l†. If |ln〉, n = 1, . . . , dl, are chosen basis elements of Vl,

then we choose as the basis of Vl† the vectors |l†n〉 := 〈ln|, which are the functionals defined by the
property 〈lñ|ln〉 = δñn.

Similarly to how we defined a tensor product representation above, one can also define Hom-
representations: Let ρV : G → U(V ) and ρW : G → U(W ) be finite-dimensional unitary repre-
sentations. Let HomK(V,W ) be defined as the vector space of linear, not necessarily equivariant,
functions from V to W . Choosing bases of V and W , this space is isomorphic to KdimV ·dimW and
thus carries a Euclidean scalar product which makes it a Hilbert space. The Hom-representation is
then given by ρHom : G→ U(HomK(V,W )) with [ρHom(g)](f) := ρW (g) ◦ f ◦ ρV (g)−1. Tensor
product representations and Hom-representations are related as follows:
Proposition A.13. Let ρV : G → U(V ) and ρW : G → U(W ) be finite-dimensional unitary
representations. The function ΨHT : V † ⊗W → HomK(V,W ) given by

ΨHT : v† ⊗ w 7→
(
v†
)
w
,
(
v†
)
w

(v′) := v†(v′) · w (9)

is an isomorphism of unitary representations. The indices HT stand for “Hom” and “Tensor”.

Note that when working with real representations instead of complex representations, the map v 7→ v†

is linear instead of only conjugate linear, and consequently, dual representations are isomorphic to
the original representation. In that case, one thus obtains V ⊗W ∼= HomR(V,W ).

A.4 COMPACT SUBGROUPS AND RESTRICTED REPRESENTATIONS

Let in this subsection G ⊆ G′ be a compact subgroup of the compact group G′. By restriction, one
can view any unitary representation of G′ as one of G, which will become important both in our
treatment of the adapted Wigner-Eckart Theorem in Section B and in considerations on the induced
representation of a given irrep in Section D:
Definition A.14 (Restricted Representation). Let ρ′ : G′ → U(V ′) be a unitary representation of G′.
We define ResG

′

G V ′ := V ′ and ResG
′

G ρ′ by

ResG
′

G ρ′ : G→ U(ResG
′

G V ′) = U(V ′), g 7→ ρ′(g).

It is called the restricted representation of ρ on G.

Crucially, restrictions of irreps of G′ need not be irreps of G. In analogy to the Clebsch-Gordan
coefficients, which emerge when decomposing tensor products, one can define irrep-decomposition
coefficients, which emerge when decomposing restrictions of irreps of the group G′ into irreps of G:
Definition A.15 (Irrep-Decomposition Coefficients). Let ρj′ : G′ → U(Vj′) be an irrep of G′. Then
there is a decomposition

ResG
′

G Vj′ ∼=
⊕
j∈Ĝ

[jj′]⊕
t=1

Vj ,

where [jj′] is the multiplicity of irrep Vj of G in ResG
′

G Vj′ . This multiplicity is zero for all but
finitely many j ∈ Ĝ. We denote the coupling coefficients between basis elements coming from
this decomposition by 〈t, jm|j′m′〉, where m ≤ dj , m′ ≤ dj′ , t ≤ [jj′]. We call them the
irrep-decomposition coefficients.

11Notice the change of order.
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Definition A.16 (Irrep-Decomposition Projections). We denote the projection from ResG
′

G Vj′ to the
t’th copy of Vj by IDjj′

t : ResG
′

G Vj′ → Vj . Is has as matrix coefficients the irrep-decomposition
coefficients for fixed t, j, j′:

〈t, jm | j′m′〉 =
〈
jm
∣∣ IDjj′

t

∣∣j′m′〉. (10)

Here, ID stands for “irrep” and “decomposition”.

B A GENERALIZED WIGNER-ECKART THEOREM FOR STEERABLE KERNELS

The kernel space solution from this work (Theorem 2.1) will be based on the Wigner-Eckart theorem
for steerable kernels from Lang & Weiler (2020). We thereby adapt that theorem in two practically
relevant ways, and thus have to reprove the theorem: First, rather than working on a homogeneous
space X of G, we work with an arbitrary space X equipped with an action of G. The special case
where X is a homogeneous space of G then recovers the result in Lang & Weiler (2020). Second,
by decomposing a certain Hom-representation instead of a tensor product representation, we make
the computational process easier which finds the harmonic basis functions that build the equivariant
kernels.

Finally, in Section B.3, we extend the previous result by reusing a G′-steerable basis to parameterize
a G-steerable kernel space.

In this whole section, we freely make use of the concepts and notation defined in Section A.

B.1 BASIS-INDEPENDENT FORMULATION OF THE GROUP-RESTRICTED WIGNER-ECKART
THEOREM

Assumptions We explain the kernel space solution for the following general setting. We assume
G is a compact group. Also, K is one of the two fields R or C (with our applications focused on
the case R). Let X be a topological Hausdorff space equipped with the Borel σ-algebra, making it
a measurable space. We assume X is equipped with a measure µ and a continuous action of G on
X . Since we want L2

K(X) to be a unitary representation over G, we assume the action of G on X to
preserve the measure µ. All these assumptions are, for example, satisfied if X is any homogeneous
space of G, or if G is a subgroup of O(n) and X ⊆ Rn any subset of the Euclidean space that is
preserved under the action of G.

Finally, ρl : G→ U(Vl) and ρJ : G→ U(VJ) are irreducible unitary input and output representations
of G. Their dimension is denoted dl and dJ , respectively.

In this setting, our goal is to determine a basis for the space of G-steerable kernels K : X →
HomK(Vl, VJ), which we define as any square-integrable function such that the steerability constraint
is satisfied, i.e.: for all g ∈ G and x ∈ X , the following holds:

K(gx) = ρout(g) ◦K(x) ◦ ρin(g)−1.

Note that, compared to Lang & Weiler (2020), the space X is in general not a homogeneous space
of the group G. We denote the space of all these G-steerable kernels by HomG(X,HomK(Vl, VJ)).
More details and intuitions on this “abstract” definition of steerable kernels (however, only for the
special case whereX is a homogeneous space ofG) can be found in Lang & Weiler (2020), Appendix
C.1.

First, note that the space L2
K(X) of square-integrable functions on X carries an action of G as

well. Similarly as in Lang & Weiler (2020), the main ingredient of the Wigner-Eckart Theorem is a
correspondence between G-steerable kernels on X and kernel operators, i.e., intertwiners, on L2

K(X).
For this, recall that both HomK(Vl, VJ) and L2

K(X) carry a G-representation.
Definition B.1 (The Kernel-Operator Correspondence). For any intertwiner K : L2

K(X) →
HomK(Vl, VJ), we define its restriction to X by

K|X(x) := K(δx),

where δx is the Dirac delta function at x ∈ X .12 K|X is then a G-steerable kernel.
12Since the Dirac delta function is not actually square-integrable, formally, this is defined by performing a

limit over square-integrable functions that more and more resemble the Dirac delta, see Lang & Weiler (2020).
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In the other direction, for any G-steerable kernel K : X → HomK(Vl, VJ), we define the extension
to L2

K(X) by

K̂(f) :=

∫
X

f(x)K(x)dµx.

This is then an intertwiner.
Theorem B.2. Those two operations are inverse to each other, i.e., K̂|X = K and K̂|X = K.

Proof. This follows from the well-known fact that L2
K(X) is isomorphic to its own dual space .

First, note that an intertwiner K : L2
K(X) → HomK(Vl, VJ) belongs to

⊕dl·dJ L2
K(X)∗, i.e. to

dl · dJ copies of the dual space of L2
K(X). Conversely, a kernel K : X → HomK(Vl, VJ) belongs to⊕dl·dJ L2

K(X), i.e. to dl · dJ copies of L2
K(X).

For 1 < p <∞ and q = p
p−1 , there is a natural isomorphism between the spaces Lp(X)∗ and Lq(X)

given by the map:

Φ : Lq(X)→ Lp(X)∗, f 7→ f̂ , f̂(g) =

∫
X

f(x)g(x)dµ(x)

Φ−1 : Lp(X)∗ → Lq(X), f̂ 7→ f, f(x) = f̂(δx)

By choosing p = q = 2 we obtain the isomorphism between L2
K(X) and L2

K(X)∗. Then, note that
the operations (̂·) and (·)|X are respectively equivalent to Φ and Φ−1 applied independently to each
of the dl · dJ subspaces isomorphic to L2

K(X) or L2
K(X)∗. And finally, note that this isomorphism is

still well-defined when restricted to the equivariant kernels and kernel operators, respectively.

Note now that, since G is acting as an isometry on X , its action on L2
K(X) is unitary. By Corollary 1,

it follows that this actions decomposes into a direct sum of irreps of G. It follows that L2
K(X) also

decomposes into a direct sum of invariant subspaces L2
K(X) ∼=

⊕̂
j∈Ĝ
⊕̂mj

i V ij , where mj is the
multiplicity of the irrep ρj ∈ Ĝ and each V ij ∼= Vj is acted on by G through ρj ∈ Ĝ. We denote a

basis for V ij with {Y mji : X → K}djm . Note that mj may be infinite, even uncountably large, since we
do not assume X to be a homogeneous space of G.

Definition B.3 (Steerable Basis). The union of {Y mji : X → K | j ∈ Ĝ, i ≤ mj ,m ≤ dj} forms a
basis for L2

K(X). We call this basis steerable since the action of G on a function L2
K(X) is realized

just by recombination of the linear coefficients used to expand this basis (via its action on each
invariant subspace through its irreps).

Note that this definition is compatible with the one in Freeman & Adelson (1991).

Similar to the harmonic projection in Def. A.8, we define an orthogonal projection on the invariant
subspaces of L2

K(X):
Definition B.4 (Steerable Basis Projections). We denote the orthogonal projection from L2

K(X) to
the i’th copy of Vj by pji : L2

K(X)→ Vj . On the steerable basis, it is given by

pji
(
Y m̃
j̃ĩ

)
= δjj̃δĩi · |jm̃〉,

which just follows from the fact that the steerable basis forms an orthonormal basis of L2
K(X), which

is then mapped to the corresponding orthonormal basis of Vj , the representation space of ρj ∈ Ĝ.

With all this in mind, we can formulate our basis-independent Wigner-Eckart Theorem forG-steerable
kernels:
Theorem B.5 (Wigner-Eckart Theorem for Steerable Kernels). The basis-independent version of the
Wigner-Eckart theorem consists of two parts:

1. There is an isomorphism of vector spaces

GKer :
⊕̂
j∈Ĝ

mj⊕
i=1

[j(l†J)]⊕
s=1

EndG,K(Vj)→ HomG(X,HomK(Vl, VJ)),
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where the hat (̂·) denotes a topological closure and can be ignored by the reader.

2. Explicitly, GKer is given by

GKer((cjis)jis) =
∑
j∈Ĝ

mj∑
i=1

[j(l†J)]∑
s=1

ΨHT ◦ij(l
†J)

s ◦ cjis ◦ pji|X .

Proof. For the first statement, we observe:

HomG(X,HomK(Vl, VJ))
(1)∼=HomG,K

(
L2
K(X),HomK(Vl, VJ)

)
(2)∼=
⊕̂
j∈Ĝ

mj⊕
i=1

HomG,K(Vj , Vl† ⊗ VJ)

(3)∼=
⊕̂
j∈Ĝ

mj⊕
i=1

[j(l†J)]⊕
s=1

EndG,K(Vj)

In (1), we perform the linear extension to the space of square integrable functions from Definition B.1,
using Theorem B.2. In (2), we use the Peter-Weyl Theorem A.6, and the isomorphism ΨHT

which we defined in Proposition A.13. Note that the decomposition from the Peter-Weyl Theorem
is G-equivariant, so this step is valid. In (3), we use the Clebsch-Gordan decomposition from
Definition A.9, and Schur’s Lemma which shows that Vj can only have a nontrivial homomorphism
to Vj , and not to any other irrep. From right to left, we call the isomorphism GKer. This proves the
first statement.

For the second statement, we go through the sequence of isomorphisms from bottom to top and trace
back where an arbitrary endomorphism tuple “comes from”:

GKer : (cjis)jis
(3)7→

[j(l†J)]∑
s=1

ij(l
†J)

s ◦ cjis


ji

(2)7→
∑
j∈Ĝ

mj∑
i=1

[j(l†J)]∑
s=1

ΨHT ◦ij(l
†J)

s ◦ cjis ◦ pji

(1)7→
∑
j∈Ĝ

mj∑
i=1

[j(l†J)]∑
s=1

ΨHT ◦ij(l
†J)

s ◦ cjis ◦ pji|X .

This finishes the proof of the second statement, and thus of the theorem.

B.2 STEERABLE KERNEL BASES

After the basis-independent version of the theorem, we now state how a basis for the space of steerable
kernels can be constructed.

The basis elements of the representation space Vl, VJ and Vj are denoted |ln〉, |JM〉 and |jm〉,
respectively, where the indices range in 0 ≤ n ≤ dl, 0 ≤ M ≤ dJ , and 0 ≤ m ≤ dj . Sometimes,
we write also YMJ instead of |JM〉, etc., in order to remind to the connection with harmonic basis
functions.

Theorem B.6 (Steerable Basis Kernels). A basis of the space of G-steerable kernels
HomG(X,HomK(Vl, VJ)) is given by basis kernels

{
Kjisr

∣∣j ∈ Ĝ, i ≤ mj , s ≤ [j(l†J)], r ≤ Ej
}

,
which are given as follows: Kjisr = GKer(cjisr), where cjisr is zero at every entry except at
position jis, where it takes on value cjr.

13

13Remember that cjr is the r’th basis endomorphism of ρj .
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Furthermore, the matrix-elements of such a basis kernel with respect to orthonormal bases |ln〉 of Vl
and |JM〉 of VJ , where M ≤ dJ and n ≤ dl, are given by:

〈JM |Kjisr(x)|ln〉

=

dj∑
m̃=1

〈s, jm̃|l†n; JM〉
dj∑
m=1

〈
jm̃
∣∣cjr∣∣jm〉 〈i, jm|x〉 (11)

where the overline denotes complex conjugation, and with 〈i, jm|x〉 := Y mji (x) for steerable basis
functions Y mji : X → K.

Proof. That these kernels form a basis follows from the fact that the cjisr obviously form a basis of
endomorphism tuples, and that GKer is an isomorphism by Theorem B.5. Concretely, this theorem
then shows that

Kjisr = ΨHT ◦ij(l
†J)

s ◦ cjr ◦ pji|X .

We write K̂jisr for the extension from Definition B.1, which is just given by K̂jisr = ΨHT ◦ij(l
†J)

s ◦
cjr ◦ pji. Furthermore, we expand the Dirac delta function δx for x ∈ X in the steerable basis of
L2
K(X) as

δx =
∑
j̃∈Ĝ

mj̃∑
ĩ=1

dj̃∑
m̃=1

〈
Y m̃
j̃ĩ

∣∣∣δx〉 · Y m̃j̃ĩ .
This expansion can be justified with a similar approximation procedure as in the proof of Lang

& Weiler (2020), Theorem D.13. Thereby, we will in the following write the coefficients as〈̃
i, j̃m̃

∣∣∣x〉 :=
〈
Y m̃
j̃ĩ

∣∣∣δx〉, which is also equal to Y m̃
j̃ĩ

(x). With these tricks, we obtain:

〈JM |Kjisr(x)|ln〉
(1)
=
〈
JM

∣∣∣K̂jisr(δx)
∣∣∣ln〉

(2)
=
∑
j̃∈Ĝ

mj̃∑
ĩ=1

dj̃∑
m̃=1

〈̃
i, j̃m̃

∣∣∣x〉〈JM ∣∣∣(ΨHT ◦ij(l
†J)

s ◦ cjr ◦ pji
)

(Y m̃
j̃ĩ

)
∣∣∣ln〉

(3)
=

dj∑
m=1

〈i, jm|x〉
〈
JM

∣∣∣(ΨHT ◦ij(l
†J)

s ◦ cjr
)

(Y mj )
∣∣∣ln〉

(4)
=

dj∑
m=1

〈i, jm|x〉
dj∑
m̃=1

〈
jm̃
∣∣cjr∣∣jm〉 〈JM ∣∣∣(ΨHT ◦ij(l

†J)
s

)
(Y m̃j )

∣∣∣ln〉
(5)
=

dj∑
m̃=1

〈
JM

∣∣∣(ΨHT ◦ij(l
†J)

s

)
(Y m̃j )

∣∣∣ln〉 dj∑
m=1

〈
jm̃
∣∣cjr∣∣jm〉 〈i, jm|x〉

We first explain the steps so far and will then deal with the last term. Step (1) uses the extension of
K from X to L2

K(X). Step (2) uses the expansion of δx explained before. Step (3) uses the property
of the projection discussed in Definition B.4 and a renaming of m̃ to m. Step (4) expands cjr(Y

m
j ) in

terms of the basis vectors Y m̃j , with the expansion coefficients being the matrix elements of cjr. Step
(5) is then just a reordering of the terms.
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Now we deal with the first factor in the last term:〈
JM

∣∣∣(ΨHT ◦ij(l
†J)

s

)
(Y m̃j )

∣∣∣ln〉
(a)
=
∑
M̃

∑
ñ

〈
l†ñ; JM̃

∣∣∣ij(l†J)
s

∣∣∣jm̃〉〈JM ∣∣∣ΨHT

(∣∣l†ñ; JM̃
〉)∣∣∣ln〉

(b)
=
∑
M̃

∑
ñ

〈
s, jm̃

∣∣∣l†ñ; JM̃
〉
·
〈
JM

∣∣∣ (〈lñ|)|JM̃〉 ∣∣∣ln〉
(c)
=
∑
M̃

∑
ñ

〈
s, jm̃

∣∣∣l†ñ; JM̃
〉〈
JM

∣∣〈lñ|ln〉∣∣JM̃〉
(d)
=
∑
M̃

∑
ñ

〈
s, jm̃

∣∣∣l†ñ; JM̃
〉
δnñδMM̃

(e)
= 〈s, jm̃|l†n; JM〉.

In step (a), we expand ij(l
†J)

s (Y m̃j ) in the basis of Vl† ⊗ VJ . In step (b), we use the definition of

the Clebsch-Gordan coefficients using the embedding ij(l
†J)

s and of ΨHT given in Proposition A.13.
Also, the definition of the dual basis given after Definition A.12 is used as the equality |l†ñ〉 = 〈lñ|.
In step (c), we use eq. 9. Step (d) and (e) are clear. Plugging this intermediate result into our earlier
computation finishes the proof.

We now formulate a matrix-version of this result that is more suitable to implementation. We
thereby identify Kjisr(x) as a matrix in KdJ×dl , for chosen bases |JM〉 in VJ and |ln〉 in Vl. I.e.,
Kjisr(x) is viewed as the matrix with coefficients 〈JM |Kjisr(x)|ln〉. Furthermore, we identify
cjr with the matrix in Kdj×dj with coefficients

〈
jm̃
∣∣cjr∣∣jm〉. Additionally, with Yji(x) we mean

the column vector in Kdj with entries 〈i, jm|x〉. Finally, with CGj(l†J)
s we mean the matrix of

Clebsch-Gordan coefficients
〈
s, jm̃

∣∣l†m; JM
〉

of shape dj × (dl × dJ). Its conjugate transpose is

denoted as
[
CGj(l†J)

s

]†
, which is of shape (dJ × dl)× dj . When using it in matrix multiplications,

it is interpreted as having dJ · dl “rows” and dj columns. This is compatible with the vectorization of
steerable kernels which was discussed in the main paper.
Theorem B.7 (Matrix-Version of Steerable Basis Kernels). The basis kernel evaluated at x,Kjisr(x),
is given by the matrix

Kjisr(x) =
[
CGj(l†J)

s

]†
· cjr · Yji(x) (12)

where each dot means conventional matrix multiplication.

Proof. We do the sanity check, i.e., we test whether the resulting matrix is well-defined and of shape
dJ × dl. This can be verified by observing that the shape of the right-hand-side of eq. 12 is:

[(dJ × dl)× dj ] · [dj × dj ] · [dj ] = [dJ × dl].
The full proof of eq. 12 follows directly from eq. 11.

Remark B.8. Note that if X is a homogeneous space for G, then the steerable basis {Y mji }jim is the
harmonic basis in Theorem A.6. Additionally, if all endomorphism spaces are 1-dimensional, which
is for example always the case for complex representations, then cjr can be chosen to be the identity
matrix and thus completely omitted from the formula.

Additionally, if one is concerned with real representations, then l† = l and the complex conjugation
in the Clebsch-Gordan coefficients can be omitted, which leads to the following formula which we
implement in this work:

Kjisr(x) =
[
CGj(lJ)

s

]T
· cjr · Yji(x). (13)

For the special case that G = SO(3), X = S2 and K = R, one obtains the basis kernels

Kj(x) =
[

CGj(lJ)
]T · Yj(x),
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where for |l − J | ≤ j ≤ l + J , the Yj : S2 → R2j+1 are the spherical harmonics. This result
was derived in Weiler et al. (2018a). Many other examples for X homogeneous space of G, with a
tensor-product decomposition instead of a Hom-space decomposition, can be found in Lang & Weiler
(2020).

B.3 A WIGNER-ECKART THEOREM FOR GROUP-RESTRICTED STEERABLE KERNELS

In this section, we consider a special case of the previous theorem where X carries an action of a
compact group G′, with G ≤ G′. We assume this action to extend the action of G on X . This result
is useful to reuse G′-steerable kernels to parameterize new G-steerable spaces without designing a
new basis for L2

K(Rn).

First of all, we denote by Ĝ′ a set of representatives of the irreps of G′ and by {Y m′j′i′ |j′ ∈ Ĝ′, i′ ≤
mj′ ,m

′ ≤ dj′} a G′-steerable basis for X . Recall also the definition of group restriction and irrep
decomposition coefficients from Definition A.15. In particular, [jj′] is the multiplicity of ρj ∈ Ĝ
inside ResGG′ ρj′ , with j′ ∈ Ĝ′, and IDjj′

t is the projection from ResG
′

G Vj′ to the t’th copy of Vj
(Definition A.16).

Proposition B.9. The G′-steerable basis for X given by {Y m′j′i′ |j′ ∈ Ĝ′, i′ ≤ mj′ ,m
′ ≤ dj′} can

be turned into a G-steerable basis defined as:{
Y mj(i′j′t) =

[
ID

[jj′]
t Yj′i′

]m
|j′ ∈ Ĝ′, i′ ≤ mj′ , j ∈ Ĝ, t ≤ [jj′],m ≤ dj

}
Proof. Because the space X carries an action of G′, we can find the action of G on L2

K(X) via group
restriction:

ResGG′ L
2
K(X) = ResGG′

⊕̂
j′∈Ĝ′

⊕̂mj′

i′=1
Vj′

=
⊕̂

j′∈Ĝ′

⊕̂mj′

i′=1
ResGG′ Vj′

=
⊕̂

j′∈Ĝ′

⊕̂mj′

i′=1

⊕̂
j∈Ĝ

⊕̂[jj′]

t=1
Vj

We can plug this basis in Theorem B.7 to obtain the following result:
Theorem B.10 (Matrix-Version of Group-Restricted Steerable Basis Kernels). The basis kernel
evaluated at x, Kj′i′jtsr(x

′), is given by the matrix

Kj′i′jtsr(x) =
[
CGj(l†J)

s

]†
· cjr · ID

jj′

t ·Yj′i′(x) (14)

where each dot means conventional matrix multiplication.

B.4 EXTENDED EXAMPLES OF STEERABLE KERNEL BASES

In this section, we provide an extended version of the two examples in Section 2.2.

In the following examples we will consider the space X = R2 and the two groups SO(2) and C4, i.e.
the group of all planar rotations and the group of rotations by multiples of π/2 radians.

SO(2)-Steerable Kernels First of all, recall the (real) irreducible representations of G = SO(2).
For rθ ∈ SO(2):

ρ0(rθ) = 1

ρj(rθ) =

[
cos j · θ − sin j · θ
sin j · θ cos j · θ

]
j ∈ N+

where j is a non-negative integer which can be interpreted as the rotational frequency. All irreps are 2
dimensional but for the frequency j = 0, which is 1 dimensional. We consider the basis B = {Yji}ji
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generated by circular harmonics combined with a Gaussian radial profile, as in Worrall et al. (2017);
Weiler et al. (2018b); Weiler & Cesa (2019), defined as:

Yji(r, φ) = ωRi(r) ·
[
cos(j · φ)
sin(j · φ)

]
∈ R2 (15)

where ωRi : R→ R is a Gaussian radial kernel centered around Ri ∈ R, defining a ring of radius
Ri. Hence, in this basis, i indexes the circular shells, while j indexes the angular frequencies along
each ring. For simplicity, in the following examples we will only consider a single ring, indexed by
i = 1. This setting is similar to the X = S1 examples discussed in Section 2.2, since each ring is
isomorphic to a circle S1. One can verify that the basis elements Yji in B are G = SO(2)-steerable
using the irrep ρj , i.e.

Yji(r, φ+ θ) = ρj(rθ)Yji(r, φ) .

To apply Theorem 2.1, we need a basis for the endomorphism space of each irrep and the irreps
decomposition between their tensor-products. If j > 0, ρj is a real irrep of complex type so its
endomorphism space is 2-dimensional and is spanned by14:{

cj1 =

[
1 0
0 1

]
, cj2 =

[
0 1
−1 0

]}
.

If J = 0, ρ0 ⊗ ρl = ρl and if l = 0, ρJ ⊗ ρ0 = ρJ . For J, l > 0, ρJ ⊗ ρl ∼= ρ|J−l| ⊕ ρJ+l if J 6= l
or ρ0 ⊕ ρ0 ⊕ ρJ+l otherwise. In particular, in the first case, using some trigonometric identities, one
can verify that

CGlJ =
1√
2

1 0 0 1
0 1 −1 0
1 0 0 −1
0 1 1 0


satisfies ρJ ⊗ ρl = [CGlJ ]T

(
ρ|J−l| ⊕ ρJ+l

)
CGlJ . In this case, CG

j(lJ)
1 = 1√

2

[
1 0 0 1
0 1 −1 0

]
if

j = |J − l| and CG
j(lJ)
1 = 1√

2

[
1 0 0 −1
0 1 1 0

]
if j = J + l. Thus, for l 6= J > 0, Theorem 2.1

prescribes a basis containing the following elements (for a single ring at radius Ri):

κ|J−l|,i,1,1(r, φ) = ωRi(r) ·

 cos(|J − l|φ)
sin(|J − l|φ)
− sin(|J − l|φ)
cos(|J − l|φ)

 ,

κ|J−l|,i,1,2(r, φ) = ωRi(r) ·

 sin(|J − l|φ)
− cos(|J − l|φ)
cos(|J − l|φ)
sin(|J − l|φ)

 ,

κJ+l,i,1,1(r, φ) = ωRi(r) ·

 cos((J + l)φ)
sin((J + l)φ)
sin((J + l)φ)
− cos((J + l)φ)

 ,

κJ+l,i,1,2(r, φ) = ωRi(r) ·

 sin((J + l)φ)
− cos((J + l)φ)
− cos((J + l)φ)
− sin((J + l)φ)

 .
Observe that these 4 basis kernels are identical to the ones in Table 8 of Weiler & Cesa (2019), up to
vectorization and a minus sign for κ|J−l|,i,1,2 and κJ+l,i,1,2. Fig. 2 shows the two kernels among
these four obtained with j = |J − l| = 1, in the case l = 1 and J = 2. For l = 0, j = J and CG0J

14Observe that we expressed ρj in a basis such that is has the form described in Lemma C.13, which implies
the endomorphism space is spanned by the basis described in Section C.3.
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is the identity matrix; then, for J > 0, Theorem 2.1 prescribes the following basis elements:

κJ,i,1,1(r, φ) = ωRi(r) ·
[
cos(Jφ)
sin(Jφ)

]
,

κJ,i,1,2(r, φ) = ωRi(r) ·
[

sin(Jφ)
− cos(Jφ)

]
.

which are also shown in Fig. 3.

C4-Steerable Kernels We construct a G = C4-steerable basis through Eq. 5 by considering the
G′ = SO(2)-steerable basis described before in Eq. 15. First, recall the representation theory of
G = C4. For p ∈ {0, 1, 2, 3}, rpπ2 = (rπ

2
)p ∈ C4; C4 has the following three irreps:

ρ0(rpπ2 ) = 1

ρ1(rpπ2 ) =

[
cos pπ2 − sin pπ2
sin pπ2 cos pπ2

]
ρ2(rpπ2 ) = (−1)p

which are, respectively, 1, 2 and 1 dimensional. Again, we index the irreps by j ∈ {0, 1, 2}, which can
be interpreted as the rotational frequency. To apply Eq. 5, we need to know the irreps decomposition
of Res

SO(2)
C4

ρj′ , for each irrep ρj′ of SO(2). We have, for t ∈ N:

Res
SO(2)
C4

ρ0 = ρ0

Res
SO(2)
C4

ρ4t = ρ0 ⊕ ρ0

Res
SO(2)
C4

ρ4t+1 = ρ1

Res
SO(2)
C4

ρ4t+2 = ρ2 ⊕ ρ2

Res
SO(2)
C4

ρ4t+3 =

[
1 0
0 −1

]
ρ1

[
1 0
0 −1

]
so, IDj′ =

[
1 0
0 −1

]
if j′ = 4t+ 3 and IDj′ is the identity otherwise. Thus, if B′ = {Yj′i′}j′i′ is the

SO(2)-steerable basis described before in Eq. 15, according to Eq. 5, a C4-steerable basis B contains
the following elements for each t ∈ N:

Y0,(i′,0,1)(r, φ) = Y0,i′(r, φ) = ωRi′ (r),

Y0,(i′,4t,1)(r, φ) = Y 1
4t,i′(r, φ) = ωRi′ (r) cos(4tφ)

Y0,(i′,4t,2)(r, φ) = Y 2
4t,i′(r, φ) = ωRi′ (r) sin(4tφ),

Y1,(i′,4t+1,1)(r, φ) = Y4t+1,i′(r, φ) = ωRi′ (r)

[
cos((4t+ 1)φ)
sin((4t+ 1)φ)

]
,

Y2,(i′,4t+2,1)(r, φ) = Y 1
4t+2,i′(r, φ) = ωRi′ (r) cos((4t+ 2)φ),

Y2,(i′,4t+2,2)(r, φ) = Y 2
4t+2,i′(r, φ) = ωRi′ (r) sin((4t+ 2)φ),

Y1,(i′,4t+3,1)(r, φ) =

[
1 0
0 −1

]
Y4t+3,i′(r, φ) = ωRi′ (r)

[
cos((4t+ 3)φ)
− sin((4t+ 3)φ)

]
The endomorphism space of ρ0 and ρ2 is one dimensional and is spanned by the identity, while the
endomorphism space of ρ1 is spanned by{

c11 =

[
1 0
0 1

]
, c12 =

[
0 1
−1 0

]}
.

The tensor products decompose as follows:
ρ0 ⊗ ρj = ρj ⊗ ρ0 = ρj

ρ2 ⊗ ρ2 = ρ0

ρ1 ⊗ ρ2 = ρ2 ⊗ ρ1 =

[
1 0
0 −1

]
ρ1

[
1 0
0 −1

]
ρ1 ⊗ ρ1 = [CG11]T (ρ0 ⊕ ρ0 ⊕ ρ2 ⊕ ρ2) CG11
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where

CG11 =
1√
2

1 0 0 1
0 1 −1 0
1 0 0 −1
0 1 1 0


whose rows are respectively denoted CG

0(11)
1 ,CG

0(11)
2 ,CG

2(11)
1 and CG

2(11)
2 . Finally, Theorem 2.1

prescribes the following basis elements for each t ∈ N and each i′:

• l, J ∈ {0, 2}:

κj,(i′,4t+j,1),1,1(r, φ) = ωRi′ (r) cos((4t+ j)φ)

κj,(i′,4t+j,2),1,1(r, φ) = ωRi′ (r) sin((4t+ j)φ)

where j = |l − J | ∈ {0, 2}.
• l = 0 and J = 1 (or l = 1 and J = 0):

κ1,(i′,4t+1,1),1,1(r, φ) = ωRi′ (r)

[
cos((4t+ 1)φ)
sin((4t+ 1)φ)

]
,

κ1,(i′,4t+1,1),1,2(r, φ) = ωRi′ (r)

[
sin((4t+ 1)φ)
− cos((4t+ 1)φ)

]
,

κ1,(i′,4t+3,1),1,1(r, φ) = ωRi′ (r)

[
cos((4t+ 3)φ)
− sin((4t+ 3)φ)

]
,

κ1,(i′,4t+3,1),1,2(r, φ) = ωRi′ (r)

[
− sin((4t+ 3)φ)
− cos((4t+ 3)φ)

]
• l = 2 and J = 1 (or l = 1 and J = 2):

κ1,(i′,4t+1,1),1,1(r, φ) = ωRi′ (r)

[
cos((4t+ 1)φ)
− sin((4t+ 1)φ)

]
,

κ1,(i′,4t+1,1),1,2(r, φ) = ωRi′ (r)

[
sin((4t+ 1)φ)
cos((4t+ 1)φ)

]
,

κ1,(i′,4t+3,1),1,1(r, φ) = ωRi′ (r)

[
cos((4t+ 3)φ)
sin((4t+ 3)φ)

]
,

κ1,(i′,4t+3,1),1,2(r, φ) = ωRi′ (r)

[
− sin((4t+ 3)φ)
cos((4t+ 3)φ)

]
• l = 1 and J = 1:

κ0,(i′,4t,1),1,1(r, φ) = ωRi′ (r) [cos(4tφ) 0 0 cos(4tφ)]
T
,

κ0,(i′,4t,1),2,1(r, φ) = ωRi′ (r) [0 cos(4tφ) − cos(4tφ) 0]
T
,

κ0,(i′,4t,2),1,1(r, φ) = ωRi′ (r) [sin(4tφ) 0 0 sin(4tφ)]
T
,

κ0,(i′,4t,2),2,1(r, φ) = ωRi′ (r) [0 sin(4tφ) − sin(4tφ) 0]
T
,

κ2,(i′,4t+2,1),1,1(r, φ) = ωRi′ (r) [cos((4t+ 2)φ) 0 0 − cos((4t+ 2)φ)]
T
,

κ2,(i′,4t+2,1),2,1(r, φ) = ωRi′ (r) [0 cos((4t+ 2)φ) cos((4t+ 2)φ) 0]
T
,

κ2,(i′,4t+2,2),1,1(r, φ) = ωRi′ (r) [sin((4t+ 2)φ) 0 0 − sin((4t+ 2)φ)]
T
,

κ2,(i′,4t+2,2),2,1(r, φ) = ωRi′ (r) [0 sin((4t+ 2)φ) sin((4t+ 2)φ) 0]
T

Fig 4 shows the basis kernels for l = 0 and t = 0. For simplicity, in Fig 4, we use k ∈ Z rather that
t ∈ N to index the basis; this difference emerges from the fact that ρj′ is isomorphic to ρ1 when
restricted from SO(2) to C4 for any j′ = |1 + 4k|, but k > 0 and k < 0 require a different change of
basis (see 4t+ 1 and 4t+ 3 above). Observe also that these basis kernels span the same space of the
ones in Table 11 of Weiler & Cesa (2019), for N = 4, up to vectorization.
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C REAL VALUED REPRESENTATIONS

In this section, we discuss the representation theory of compact groups on the real field R.

Usually in representation theory, one assumes complex-valued signals in L2
C(G) and complex repre-

sentations of G. However, in this work, we implement equivariant CNNs using real representations,
and therefore must discuss general issues arising in this case.

When using real representations, the theory becomes more difficult: while the matrix coefficients
of the irreducible representation span the space of real square-integrable functions L2

R(G), they
are not necessarily orthogonal to each other anymore. More precisely, the matrix coefficients
belonging to the same irrep might be linearly dependent, while different irreps still contain orthogonal
coefficients. This is a consequence of the fact that the strong version of Schur’s Lemma stating that
the endomorphism space of irreps are one dimensional does not hold for representations over R.

As before, we freely make use of the preliminaries from Section A. In particular, recall that for real
representations, we talk about orthogonal representations instead of unitary representations, and such
representations take values in the orthogonal group O(V ) of some real Hilbert-space V .

In Section C.1, we introduce some properties of real irreducible representations and characterize
their endomorphism space. In Section C.2, we show that any real irrep can always be expressed with
respect to a convenient basis such that a set of linearly independent matrix coefficients are contained
in a subset of the columns of the irrep. This will be particularly useful to construct real harmonic
bases in Section D and, in particular, in Corollary 5. Additionally, we describe a method to find such
a basis for an arbitrary real irrep. Finally, in Section C.3, we show an example of such basis, which
makes the result more intuitive. Additionally, we use this specific basis to simplify computations in
Section F.

C.1 PRELIMINARIES ON THE STRUCTURE OF EndG,R(Vψ)

Fix an orthogonal irreducible real representation ψ : G → O(Vψ) of the compact group G. Let
EndG,R(Vψ) be its endomorphism algebra. It is well-known that this endomorphism algebra is
isomorphic (in a sense which will be made precise in the following proposition) to one of the division
algebras R, C, and H, i.e., the real numbers, complex numbers, or quaternions, see Bröcker & Dieck
(2003), Theorem 6.7. Let K ∼= EndG,R(Vψ) be this division algebra. Let Eψ = dim EndG,R(Vψ)
its dimension. Let i1 = 1, i2 = i, i3 = j and i4 = k with 1, i, j, k ∈ H the usual basis. It
has the characterizing properties i2 = j2 = k2 = −1, that 1 is a multiplicative identity, and that
ij = k = −ji, jk = i = −kj, and ki = j = −ik. Then K has as an orthonormal basis {il}

Eψ
l=1. We

now make the properties of the isomorphism precise:

Proposition C.1. There is K ∈ {R,C,H} such that there is a function Φ : K→ EndG,R(Vψ) with
the following properties:

1. Φ(x+ y) = Φ(x) + Φ(y) for all x, y ∈ K.

2. Φ(λx) = λΦ(x) for all λ ∈ R and x ∈ K.

3. Φ(xy) = Φ(x) ◦ Φ(y) for all x, y ∈ K.

4. Φ(1) = idVψ .

5. Φ is bijective.

6. Φ(ik) ∈ O(Vψ) for all k ∈ {1, . . . , Eψ}.

Proof. Properties 1 to 5 are the properties of an R-algebra isomorphism. Such an R-algebra isomor-
phism Φ exists by Bröcker & Dieck (2003), Theorem 6.7.

We now show that this automatically already implies property 6 as well: Φ(il) ∈ EndG,R(Vψ) is
a non-zero endomorphism, and thus, by Schur’s Lemma for orthogonal representations (see Lang
& Weiler (2020), Lemma B.29), there exists a coefficient µl ∈ R such that µlΦ(il) ∈ O(Vψ). We
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deduce:
µlΦ(il) ◦ µlΦ(il) = µ2

lΦ(il · il)
= ±µ2

lΦ(1)

= ±µ2
l idVψ .

Together with µlΦ(il) ◦ µlΦ(il) ∈ O(Vψ) we necessarily have µ2
l ∈ {±1}, and thus µl = ±1.

Thus, Φ(il) = ±µlΦ(il) ∈ O(Vl), which shows 6.

Definition C.2. Let ψ be a real irrep. Depending on its endomorphism algebra EndG(ψ), ψ is
classified in one of the following three categories:

• real type: if EndG(Vψ) ∼= R

• complex type: if EndG(Vψ) ∼= C

• quaternionic type: if EndG(Vψ) ∼= H

From now on, fix the isomorphism Φ : K→ EndG,R(Vψ) and denote Il := Φ(il).

For simplifying the notation, we set dψ := dimψ := dimVψ . From now on, we assume for simplicity
that Vψ = Rdψ , which holds up to isomorphism. The scalar product on Vψ is then just given by
〈v | w〉 = vTw, and Vψ has the standard basis {e1, . . . , edψ} with ei having a 1 at position i and
being zero elsewhere.

For any A ∈ EndG,R(Vψ), we define AT ∈ EndG,R(Vψ) as the transpose, which is also the unique
matrix and linear function AT : Vψ → Vψ such that 〈Av | w〉 = 〈v | ATw〉 for all v, w ∈ Vψ. That
AT is also an endomorphism is for the fact that ψ is an orthogonal representation.

We define the following inner product on EndG,R(Vψ):

〈A | B〉 =
1

dψ
Tr(ABT ), (16)

where Tr is the trace of a matrix, given by the sum of diagonal elements. The trace is linear and
continuous and has the property Tr(AB) = Tr(BA), which results in the trace of a matrix being
independent of the basis in which it is expressed.
Lemma C.3. We have the following:

1. Il = −I−1
l for l > 1.

2. [Il]ii = 0 for l > 1 and i ∈ {1, . . . , dψ}.

3. 〈Il | Il′〉 = δll′ for all l.

Proof. 1. This follows from Il ◦ Il = Φ(i2l ) = −Φ(1) = − idVψ for all l > 1.

2. From Proposition C.1 we know that Il ∈ O(Vψ) for all l. So, I−1
l = ITl . For l > 1, we

deduce Il = −ITl from 1, i.e., Il + ITl = 0. It follows [Il]ii = 1
2 [Il + ITl ]ii = 0.

3. Note that there is some l′′ ∈ {1, . . . , Eψ} such that the following holds:

〈Il | Il′〉 =
1

dψ
Tr
(
IlI

T
l′
)

=
1

dψ
Tr
(
Φ(il) · Φ(il′)

−1
)

=
1

dψ
Tr
(
Φ(il · i−1

l′ )
)

=
1

dψ
Tr
(
Φ(±il′′)

)
=

1

dψ
Tr
(
± Il′′

)
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Thereby, we made use of Il′ ∈ O(Vψ) in step 2, and used the multiplication properties of the
quaternions in the second to last step. Note that il′′ = 1 if and only if l = l′, and that in this case, we
have Il′′ = Φ(il′′) = idVψ , leading to 〈Il|Il′〉 = 1. If, however, l′′ > 1 (i.e., l 6= l′), then we have
[Il′′ ]ii = 0 for all i by part 2, and thus we get a zero trace, proving the result.

Corollary 2. The function Φ : K → EndG,R(Vψ) is a unitary isomorphism, meaning: When
considering K as an R-vector space with standard inner product 〈· | ·〉 and considering EndG,R(Vψ)
as an R-vector space with inner product given by eq. 16, then we have for all x, y ∈ K

〈Φ(x) | Φ(y)〉 = 〈x | y〉.
Furthermore, {I1, . . . , IEψ} forms an orthonormal basis of EndG,R(Vψ).

Proof. First, note that eq. 16 clearly defines a positive-definite inner product on EndG,R(Vψ). Write
x =

∑Eψ
l=1 xlil and y =

∑Eψ
l′=1 yl′il′ . Using Lemma C.3, part 3, we obtain:

〈Φ(x) | Φ(y)〉 =

Eψ∑
l=1

Eψ∑
l′=1

xlyl′〈Il | Il′〉

=

Eψ∑
l=1

xlyl

= 〈x | y〉
The last statement that the Il form an orthonormal basis of EndG,R(Vψ) follows from Lemma C.3
part 3 as well, together with the fact that Φ(il) = Il and that Φ is an isomorphism.

For x =
∑Eψ
l=1 xlil ∈ K, the conjugation x is defined by

x = x1 −
Eψ∑
l=2

xlil.

Furthermore, we define the norm ‖W‖ :=
√
〈W |W 〉 for W ∈ EndG,R(Vψ).

Proposition C.4. We have the following:

1. For x ∈ K, we have Φ(x) = Φ(x)T .

2. For any W ∈ EndG,R(Vψ), we have WWT = ‖W‖2 · idVψ .

Proof. 1. We have

Φ(x) = Φ

(
x1i1 −

Eψ∑
l=2

xlil

)

= x1I1 −
Eψ∑
l=2

xlIl

= x1I
T
1 +

Eψ∑
l=2

xlI
T
l

=

( Eψ∑
l=1

xlIl

)T

=

(
Φ

( Eψ∑
l=1

xlil

))T
= Φ(x)T .

In the third step, we used I1 = idVψ and ITl = −Il, which was shown in Lemma C.3
together with Il ∈ O(Vl).

31



Published as a conference paper at ICLR 2022

2. This follows from the well-known fact that xx = ‖x‖2 for x ∈ K and part 1.

C.2 ORTHOGONALITY AND ALIGNMENT OF MATRIX COEFFICIENTS

The investigations here on the orthogonality relations of matrix coefficients of irreducible real
representations generalize what’s presented in Knapp (2002) for complex representations to real
representations. The results thereby become a bit more involved.

Remember that Vψ = Rdψ has the standard basis {e1, . . . , edψ}. Define Eij := eie
T
j ∈ Rdψ×dψ .

Furthermore, define

Oij :=

∫
G

ψ(g)Eijψ(g)−1dg =

∫
G

ψ(g)Eijψ(g)Tdg.

Remember that ψ : G → O(Vψ) = O(Rdψ ) ⊆ Rdψ×dψ takes values in dψ × dψ-matrices. For
k, j ∈ {1, . . . , dψ}, define ψkj : G→ R as the function ψkj ∈ L2

R(G) given by ψkj(g) := ψ(g)kj .
Remember that we have a scalar product on L2

R(G) given by 〈f | h〉 :=
∫
G
f(g)h(g)dg, which

means we can evaluate also scalar products of different matrix coefficients.

Lemma C.5. We have the following:

1. Oij ∈ EndG,R(Vψ).

2. Oij = 1
dψ

∑Eψ
l=1[Il]ij · Il .

3. Oij =
(
〈ψk1i | ψk2j〉

)dψ
k1,k2=1

.

Proof. We prove the three statements as follows:

1. From the integration-measure on G being a Haar measure, i.e., left-invariant, it can easily
be checked that Oijψ(g′) = ψ(g′)Oij for all g′ ∈ G.

2. From Oij ∈ EndG,R(Vψ) and the fact that the Il form an orthonormal basis of the space
EndG,R(Vψ) by Corollary 2, we obtain Oij =

∑Eψ
l=1〈Il | Oij〉Il. We now determine the

coefficients:

〈Il | Oij〉 = 〈Oij | Il〉

=
1

dψ
Tr
(
OijI

T
l

)
=

1

dψ
Tr

(∫
G

ψ(g)Eijψ(g)−1ITl dg

)
(1)
=

1

dψ

∫
G

Tr
(
ψ(g)EijI

T
l ψ(g)−1

)
dg

(2)
=

1

dψ

∫
G

Tr
(
EijI

T
l

)
dg

=
1

dψ
Tr
(
EijI

T
l

)
=

1

dψ
[Il]ij

In (1), we use that Il is an endomorphism, i.e., commutes with ψ(g). Additionally, we use
that Tr is linear and continuous, and thus commutes with integrals. Step (2) uses that the
trace satisfies Tr(AB) = Tr(BA). In the last step, we make use of Eij = eie

T
j .
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3. We have

Oij =

∫
G

ψ(g)Eijψ(g)−1dg

=

∫
G

ψ(g)eie
T
j ψ(g)Tdg

=

∫
G

 ψ1i(g)
...

ψdψi(g)

 · (ψ1j(g) . . . ψdψj(g)
)

dg

=

∫
G

(
ψk1i(g)ψk2j(g)

)dψ
k1,k2=1

dg

=
(
〈ψk1i | ψk2j〉

)dψ
k1,k2=1

.

Corollary 3. We have 〈ψk1j | ψk2j〉 =
δk1k2

dψ
for all k1, k2, j ∈ {1, . . . , dψ}. In other words, the

matrix coefficients in the same column are orthogonal to each other, and they are normalized up to a
constant factor: ‖

√
dψ · ψkj‖ = 1.

Proof. Remember that in Lemma C.3 we showed [Il]jj = 0 for l > 1 and that I1 = idVψ . Together
with Lemma C.5, we obtain:

〈ψk1j | ψk2j〉 =
[
Ojj

]
k1k2

=

[
1

dψ

Eψ∑
l=1

[Il]jj · Il
]
k1k2

=
1

dψ
[I1]jj · [I1]k1k2

=
δk1k2
dψ

.

The statement about the normalization is clear.

Lemma C.6. For any p, q ∈ {1, . . . , Eψ} and for any v ∈ Vψ , 〈Ipv|Iqv〉 = δpq〈v|v〉.

Proof. Note that there is a l such that ITp Iq = ±Il. If p = q, ITp Ip = I1 = idVψ is the identity
matrix, hence vT ITp Iqv = vTv. Otherwise, l > 1 and Il = −ITl is a skew symmetric matrix, hence
vT Ilv = 0. Indeed, note that, for any matrix A, it holds that vTAv = vTATv. If A is a skew
symmetric matrix (AT = −A), it follows that vTAv = 0.

Lemma C.7. For each column j, the set of matrices {Oij}i spans the space EndG(Vψ), which is an
Eψ dimensional space.

Proof. To prove this, it is sufficient to look at the set of coefficient vectors of each of these matrices
when expressed with respect to the basis {Il}l of EndG(Vψ). If this set of coefficient vectors spans
an Eψ dimensional space, the proof is complete. Because Oij = 1

dψ

∑
l[Il]ijIl, let’s consider the set

of vectors {([Il]ij)l}
dψ
i=1 and stack them in the rows of a matrix M ∈ Rdψ×Eψ . The set of vectors

spans an Eψ dimensional space if and only if M has row rank or, equivalently, column rank Eψ.
Because M has Eψ nonzero columns (namely, the l’th column of M is the j’th column of Il, which
is non-zero since Il is invertible), then it has column rank equal to Eψ if and only if all its columns
are pairwise orthogonal.

The orthogonality of the columns ofM follows from Lemma C.6. Indeed, note that the l-th column of
M contains the j-th column of Il. By choosing v = ej in Lemma C.6, it follows that the column j of
two different basis elements Il1 and Il2 are orthogonal. Thus, the columns of M are orthogonal.
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From Lemma C.7, and since EndG(Vψ) contains only the zero-map and isomorphisms, it follows
that, for any j, the set of vectors {Oijej}

dψ
i=1 spans an Eψ dimensional vector space. We will

show that this means that there is a change of basis B ∈ Rdψ×dψ and a corresponding irrep
ψ̃ = BTψB isomorphic to ψ such that, for any j, {Õijej}

dψ
i=1 contains only Eψ non-zero vectors,

where Õij :=
∫
G
ψ̃(g)Eijψ̃(g)Tdg.

We give a constructive proof now. First, we build one such matrix B starting from the basis elements
{Il}

Eψ
l=1. Then, we show that for ψ̃ = BTψB, for each j, the matrix Õij is non-zero precisely for

Eψ different values of i.

Lemma C.8. For any vectors v,w ∈ Rdψ , if 〈Ipv|w〉 = 0 for all p, then 〈Ipv|Iqw〉 = 0 for any p
and q.

Proof. For any p and q, there exists l such that IpITq = ±Il. Then 〈Ipv|Iqw〉 = vT ITp Iqw =

±vT ITl w = ±〈Ilv|w〉 which is zero by assumption.

To construct the matrix B, we use the following algorithm. Let B = ∅ ⊆ Rdψ the empty set. Repeat
the following process dψ/Eψ times:15

Take a normalized vector v ∈ Rdψ which is orthogonal to all vectors in B. Add the vectors {Ilv}
Eψ
l=1

to B. Note that all vectors {Ilv}
Eψ
l=1 are orthogonal to each other because of Lemma C.6. Note that if

B contains the vectors {Ilw}l and we choose a vector v such that it is orthogonal to all {Ilw}l, then,
due to Lemma C.8, the updated set B still contains only pairwise orthogonal vectors.

The matrix B is built by stacking horizontally the vectors in B. Note that since all v in the process
are normalized, and the Ilv are normalized as well by Lemma C.6, the matrix is orthogonal, i.e.
BTB = BBT = id.

By construction, for any l, the left multiplication of B by Il only results in a permutation of the
columns of B (and, potentially, flipping their sign). In particular, Il only permutes the vectors in B
belonging to the same group {Ilv}l. Hence, there exists a permutation matrix Pl (with, potentially,
negative entries) such that IlB = BPl.

Let, as mentioned before, ψ̃(g) := BTψ(g)B, i.e., ψ̃ is isomorphic to ψ via B. Also, let Õij =∫
G
ψ̃(g)Eijψ̃(g)Tdg.

Lemma C.9. Let ψ be a real irrep and B a matrix computed as above. Fix j ∈ {1, . . . , dψ}. Then,
the following holds:

1. Fix also i ∈ {1, . . . , dψ}. Then Õij 6= 0 if and only if there is a unique l ∈ {1, . . . , Eψ}
such that [Pl]ij 6= 0. In that case, Õij = 1

dψ
[Pl]ijPl.

2. The matrix Õij is non-zero for precisely Eψ different values of i.

15The process itself will reveal that dψ/Eψ is a whole number.
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Proof. 1. Let Bi and Bj , respectively, the i-th and the j-th columns of B.

Õij =

∫
G

BTψ(g)BEijB
Tψ(g)TBdg

= BT
(∫

G

ψ(g)BiB
T
j ψ(g)Tdg

)
B

= BT

(∫
G

ψ(g)

(∑
ab

BaiBbjEab

)
ψ(g)Tdg

)
B

=
∑
a,b

BaiBbjB
TOabB

=
1

dψ

∑
l

(∑
a,b

BaiBbj [Il]ab

)
BT IlB

=
1

dψ

∑
l

[BT IlB]ijB
T IlB

=
1

dψ

∑
l

[Pl]ijPl,

where in the last step we used that B has the property BT IlB = BTBPl = Pl, where Pl
has the structure of a signed permutation matrix. Thus, if Õij 6= 0, then there exists l such
that [Pl]ij 6= 0.

For the other direction, assume that there is such an l. We want to show that there cannot be
another k with [Pk]ij 6= 0. If we can do that, then it follows Õij = 1

dψ
[Pl]ijPl 6= 0 and we

are done.

To do so, first observe that 〈Plej |Pkej〉 = δlk. Indeed,

〈Plej |Pkej〉 = eTj P
T
l Pkej

= eTj B
T ITl BB

T IkBej

= eTj B
T ITl IkBej .

Now, note that there exists a m such that ITl Ik = ±Im. In particular, if l = k, ITl Il =
I1 = id and, therefore, eTj B

T ITl IkBej = eTj ej = 1. Otherwise, eTj B
T ITl IkBej =

±eTj BT ImBej = 0, thanks to Lemma C.6.

Now, assume we have [Pl]ij 6= 0 6= [Pk]ij . Then, since Pl and Pk are signed permutation
matrices, all other entries in column j are zero, meaning that

0 6= [Pl]ij · [Pk]ij =
∑
i

[Pl]ij · [Pk]ij = 〈Plej | Pkej〉 = δkl,

meaning that k = l.

2. For l = 1, . . . , Eψ , let il ∈ {1, . . . , dψ} be the unique index such that [Pl]ilj 6= 0. It follows
Õilj 6= 0 from part 1. We also know from part 1 that all il are pairwise different, so we
found Eψ such indices. Now, assume i is such that Õij 6= 0. Then, from part 1 again, we
get that there exists l such that [Pl]ij 6= 0, and thus i = il. That finishes the proof.

As a last classical result, we will use the Cauchy-Schwartz inequality, which is well-known and
therefore without a proof:
Lemma C.10. Let V be any Hilbert space with scalar product 〈· | ·〉. Let v, w ∈ V . Then one has

|〈v | w〉| ≤ ‖v‖ · ‖w‖,
with equality if and only if v and w are linearly dependent.
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Theorem C.11. Let ψ be a real irrep. Then, there exists a real irrep ψ̃, isomorphic to ψ, such that
the following holds. Fix j ∈ {1, . . . , dψ}:

1. The matrix coefficients in column j of ψ̃ are orthogonal to all matrix coefficients of ψ̃ in all
but precisely Eψ columns i.

2. If i is one of the remaining Eψ columns, then ψ̃ei is a signed permutation of ψ̃ej .

Proof. Let B and ψ̃ = BTψB as before. We know from Lemma C.9 that there are precisely Eψ
values for i such that Õij 6= 0.

1. Assume Õij = 0. Then, since by Lemma C.5 we have Õij =
(〈
ψ̃k1i

∣∣ψ̃k2j〉)dψ
k1,k2=1

, it

follows that columns i and j of ψ̃ are fully orthogonal to each other.

2. Assume Õij 6= 0. Then, by Lemma C.9, there is l such that [Pl]ij 6= 0 and Õij =
1
dψ
· [Pl]ij · Pl, where Pl is a signed permutation matrix. We have [Pl]ij = ±1, i.e., we can

wlog. assume [Pl]ij = 1, i.e., Õij = 1
dψ
Pl.

Now, let k1 ∈ {1, . . . , dψ} be arbitrary and look at the matrix coefficient ψ̃ik1 . Then, since
1
dψ
Pl =

(〈
ψ̃k1i

∣∣ψ̃k2j〉)dψ
k1,k2=1

by Lemma C.5 again, and due to the structure of Pl, there is

precisely one k2 ∈ {1, . . . , dψ} such that 〈ψ̃k1i | ψ̃k2j〉 = ± 1
dψ

. By the Cauchy-Schwartz
inequality Lemma C.10 it follows:

1

dψ
=
∣∣〈ψ̃k1i∣∣ψ̃k2j〉∣∣ ≤ ∥∥ψ̃k1i∥∥ · ∥∥ψ̃k2j∥∥ =

1√
dψ
· 1√

dψ
=

1

dψ
.

In the second to last step, we thereby made use of Corollary 3. We obtain
∣∣〈ψ̃k1i∣∣ψ̃k2j〉∣∣ =∥∥ψ̃k1i∥∥ · ∥∥ψ̃k2j∥∥ and thus, by the last statement in Lemma C.10, that ψ̃k1i and ψ̃k2j are

linearly dependent. Since they have the same norm, it follows ψ̃k1i = ±ψ̃k2j . Since for
different k1, the value of k2 needs to differ as well due to Pl being a signed permutation
matrix, the result follows.

This result is convenient to define a real harmonic basis {Y mij } for L2
R(G), which we then use in

Corollary 5.

C.3 A CONVENIENT CHOICE OF BASIS FOR REAL IRREPS

At the end of the previous section, we described a method that, given a real irrep ψ and a basis
for EndG(Vψ), generates an isomorphic irrep ψ̃ which satisfies the convenient properties in The-
orem C.11. To provide an intuition of what structure these real irreps have and to simplify some
computations in Section F, in this section we describe a choice of basis to express each real irreducible
representation, satisfying the properties in Theorem C.11. Note that this particular choice of basis is
not necessary in most of our results, since we rely only on a generic orthonormal basis for EndG(Vψ),
but is useful to simplify Section F.

The content of this section is mostly based on Boardman (2007) and Bröcker & Dieck (2003). Recall
first the classification of real irreps in real, complex or quaternionic type according to Definition C.2.
We will rely on the following useful results:
Lemma C.12. For any real type real irrep ψ, its complexification is isomorphic to a complex irrep σ,
with σ ∼= σ. The complexification of ψ is a representation like ψ which acts on Cdψ rather than Rdψ .

and
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Lemma C.13. Any complex or quaternionic type real irrep ψ is isomorphic to the realification of a
complex irrep σ. In other words, for any complex or quaternionic type real irrep ψ, there exists a
complex irrep σ such that:

ψ ∼=
[
Re (σ) − Im (σ)
Im (σ) Re (σ)

]
∼= σ ⊕ σ

Additionally, if it has quaternionic type, it also holds that σ ∼= σ.

Indeed, using Re (x) = 1
2 (x+ x) and Im (x) = − 1

2 i(x− x), one can verify that:[
Re (σ) − Im (σ)
Im (σ) Re (σ)

]
= D

[
σ(g) 0

0 σ(g)

]
D†

where

D =
1√
2

[
i iddσ −i iddσ
iddσ iddσ

]

Using these results, we define a convenient choice of basis for ψ for each possible irrep type. For
each case, we also define an associated basis for EndG(Vψ).

Real type irrep Since ψ ∼= σ (as complex irreps), we do not need further assumptions on the basis
of ψ. Note also that EndG(Vψ) contains only scalar multiples of the identity; hence, regardless of
the choice of basis for ψ, a basis for EndG(Vψ) is given by the identity matrix.

Complex type irrep If ψ has complex type, we assume that ψ is expressed in a basis such that

ψ =

[
Re (σ) − Im (σ)
Im (σ) Re (σ)

]
for some complex irrep σ. Note that this is a natural choice, for example,

for G = SO(2). It follows that a basis for EndG(Vψ) is given by the following homomorphism
Φ : C→ EndG(Vψ):

Φ(1) =

[
idn 0
0 idn

]
Φ(i) =

[
0 − idn

idn 0

]
where n = dψ/2 and idn is the identity matrix of size n.

Quaternionic type irrep Similarly, if ψ has quaternionic type, we assume that ψ is expressed in

a basis such that ψ =

[
Re (σ) − Im (σ)
Im (σ) Re (σ)

]
for some complex irrep σ. One can show that if σ has

quaternionic type, it can always be expressed in a basis such that it has the following block structure:

σ(g) =

[
σ1(g) −σ2(g)

σ2(g) σ1(g)

]
(17)

and, therefore:

ψ(g) =

Re

([
σ1(g) −σ2(g)

σ2(g) σ1(g)

])
− Im

([
σ1(g) −σ2(g)

σ2(g) σ1(g)

])
Im

([
σ1(g) −σ2(g)

σ2(g) σ1(g)

])
Re

([
σ1(g) −σ2(g)

σ2(g) σ1(g)

])
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A basis for EndG(Vψ) is given by the following homomorphism Φ : H→ EndG(Vψ):

Φ(1) =

idn 0 0 0
0 idn 0 0
0 0 idn 0
0 0 0 idn



Φ(i) =

 0 0 − idn 0
0 0 0 − idn

idn 0 0 0
0 idn 0 0



Φ(j) =

 0 − idn 0 0
idn 0 0 0
0 0 0 idn
0 0 − idn 0



Φ(k) =

 0 0 0 − idn
0 0 idn 0
0 − idn 0 0

idn 0 0 0



where n = dψ/4.

D THE COMPUTATION OF THE INDUCED REPRESENTATION OF COMPACT
GROUPS

Quotient and induced feature fields, i.e. features fields where the feature type ρ is an quotient or
induced representation (see Sec 2.1), were studied in Weiler & Cesa (2019) for the planar groups.
These feature types encode square-integrable scalar or vector functions over a homogeneous space
X = G/H of G. If X is not finite, one restricts the consideration to a subspace of bandlimited
functions by using a finite subset of an harmonic basis for the space of all functions. A band-limited
function is then parameterized by a coefficients vector, which carries an action of G as a direc-sum
of G irreps. Given one such vector, the function it parametrizes can be sampled at any point of
x ∈ X by evaluating the harmonic basis on x. For example, in Sec.5.3, we employed models with
quotient features over the sphere S2 ∼= SO(3)/ SO(2) or the space Inv×S2 ∼= O(3)/SO(2). See
also Section H.3 for more details on how this is used in our neural network design.

Recall also that a G-orbit is isomorphic to an homogeneous space for G and, therefore, to a quotient
space G/H = {g.H|g ∈ G}, where H < G is a stabilizer subgroup of the space; e.g. SO(3).x ∼=
S2 ∼= SO(3)/SO(2) for x ∈ R3 non-zero. The Wigner-Eckart theorem from Lang & Weiler (2020)
relies on an harmonic basis over an orbit G.x of the equivariance group G inside the base-space X .
While our Theorem B.7 relies on a G-steerable basis for X , a simple way (although, generally more
complicated to band-limit and discretize) to generate such basis is by embedding G-orbits inside X
and use the harmonic bases of such orbits. This is visualized for G = C4 in Fig. 1b and used for the
G = I baselines in Sec. 5.2

In all these settings, an harmonic basis for functions on an homogeneous space is required. In this
section, we describe how to compute the harmonic basis for scalar and vector fields over a compact
homogeneous space16 X ∼= G/H , directly from the matrix coefficients of the irreps of G. A vector
field over X = G/H is a function f : X → Rdψ (or Cdψ ) and transforms under the action of
G according to an induced representation IndGH ψ, where ψ is an irrep of H . We give a precise
definition of induced representation acting on such vector fields in Def. D.3. Note that scalar fields
are considered a special case of vector fields. In particular, scalar fields on G/H transform according
to IndGH ψ0, where ψ0 : H → {1} is the trivial representation of H . We occasionally call this
representation acting on scalar fields a quotient representation.

Similar investigations are well-documented for complex representations: for the case X = G, a
complex harmonic basis is given by the matrix coefficients of its irreps, as described by the Peter-

16Note that in this section we use X with a different meaning with respect to the rest of the paper.
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Weyl theorem A.6. A similar result for complex-valued representations and scalar functions on
homogeneous spaces was also described in Kondor & Trivedi (2018).

Outline and goal After some definitions and assumptions in Supplementary D.1, we provide
different equivalent definitions of the induced representation in Supplementary D.2. Then, we
construct the harmonic basis of induced representations in Supplementary D.3. Finally, Corollaries 4
and 5 provide the final harmonic bases for the complex and real settings, respectively.

We freely make use of the concepts defined in Supplementary A in this whole section.

D.1 USEFUL DEFINITIONS, ASSUMPTIONS AND NOTATIONS

In this section, we will always assume a compact group G and a compact subgroup H ⊆ G. The
neutral elements of these groups are just denoted e ∈ H , which is the same for both groups. As
before, for generality, we allow K to be any of the two fields R or C before we will later separately
consider complex and real representations. Ĥ is the set of all isomorphism classes of unitary irreps
of H and ψ ∈ Ĥ is, by abuse of notation, meant to refer to a representative of such an isomorphism
class. For the rest of the section, we fix such an irrep ψ : G→ U(Vψ).

In order to generate a harmonic basis for the functions in the induced representation, we only rely
on an harmonic basis for L2

K(G), a basis for the endomorphism space of each irrep ρ ∈ Ĝ and the
irrep decomposition of the irreps of G when restricted to H < G. Assuming these are known, in the
rest of this section we will use them to explicitly build a harmonic basis for functions transforming
according to an induced representation.

D.2 INDUCED REPRESENTATIONS

We can now introduce the induced representation. In this section, we will limit to the case where
ψ : H → U(Vψ) is an irreducible representation of H . This is fixed in this whole section. Induction
from non-irreducible representations of H can be built by combining the induced representations of
the H irreps composing the reducible H-representation.

We now define the induced representation as a space of Mackey Functions, and then alternatively as a
space of vector fields over a quotient space. The constructions are well-known and can for example be
found in Taylor & Kaniutrh (2013). This book also contains more theoretical justifications, including
the definition of the scalar product making the induced representation a Hilbert space and proofs that
both versions of the representation are actually unitary.
Definition D.1 (Mackey Functions). A Mackey function is a ψ-vector field f : G→ Vψ which has
square-integrable component-functions, i.e., in L2

K(G), and with the following equivariance-property:
for all h ∈ H and g ∈ G one has

f(gh−1) = ψ(h)f(g). (18)

We denote the space of Mackey functions by HomH(G,Vψ).17 This becomes a unitary G-
representation with the action

[g.f ](g′) := f(g−1g′) . (19)
Remark D.2. One can verify that g.f still belongs to the space of Mackey functions. Indeed, for
g, g′ ∈ G, h ∈ H and f ∈ HomH(G,Vψ) one has

[g.f ](g′h−1) = f(g−1(g′h−1))

= f((g−1g′)h−1)

= ψ(h)f(g−1g′)

= ψ(h)[g.f ](g′).

Before we come to the definition as quotient vector fields, recall that for the pair of compact groups
H ⊆ G, one can build the space of cosets

G/H := {gH | g ∈ G} . (20)
17These functions can be viewed as left-H-equivariant when using the left action h ? g := gh−1 of H on G,

which explains the notation.
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There is a projection π : G→ G/H given by g 7→ gH which induces a topology on G/H , making it
a compact topological Hausdorff space. Together with the action g.(g′H) := (gg′)H , G/H becomes
a homogeneous space of G, and thus carries a Haar measure.

Now, pick an arbitrary measurable section r : G/H → G associating a representative element to
each coset gH ∈ G/H .18 In other words, the section r satisfies π ◦ r = idG/H , with the projection
as defined above. This can also be written as

r(gH)H = gH, for all g ∈ G. (21)
Since r(gH)H = gH , we automatically have that

h(g) := r(gH)−1g ∈ H, for all g ∈ G. (22)
Since g = r(gH) · h(g), it follows that every g ∈ G is fully characterized by the pair (gH,h(g)) ∈
(G/H) × H . We fix from now on the definitions of the section r : G/H → G and the map
h : G→ H , with the latter implicitly depending on r.
Definition D.3 (ψ-Vector Fields over the Quotient Space). A ψ-vector field over the quotient space
G/H is defined to be any function of the form

f ′ : G/H → Vψ

that has square-integrable component-functions with respect to the Haar measure on G/H , i.e.,
the component-functions are in L2

K(G/H). The space of these ψ-vector fields is denoted by
Hom(G/H, Vψ). This becomes a unitary G-representation with the action

[g.f ′](g′H) := ψ
(

h
(
g r(g−1g′H)

))
f ′
(
g−1g′H

)
. (23)

Note that the action ofG on Hom(G/H, Vψ) depends on the choice of the (not necessarily continuous)
section r : G/H → G of the quotient space.

We now show that these two definitions are equivalent:
Proposition D.4. There is an isomorphism of unitary representations

HomH(G,Vψ) Hom(G/H, Vψ)

(̃·)

(·)

between the space of Mackey functions on the left and the space of quotient vector fields on the right,
given as follows:

1. For f : G→ Vψ a Mackey function, we define

f̃(gH) := f(r(gH))

using the section defined in eq. 21.

2. For a quotient vector field f ′ : G/H → Vψ , we define

f ′(g) := ψ(h(g)−1)f ′(gH)

using the function h : G→ H defined in eq. 22.

Proof. In this proof, we freely make use of eq. 21 and eq. 22. First, we show the equivariance of (̃·):
Let f : G→ Vψ satisfy eq. 18. First, note that

h
(
g r
(
g−1g′H

))
= r

(
g r
(
g−1g′H

)
H
)−1

g r
(
g−1g′H

)
= r

(
gg−1g′H

)−1
g r
(
g−1g′H

)
= r(g′H)−1g r

(
g−1g′H

)
=
(

r
(
g−1g′H

)−1
g−1 r(g′H)

)−1

= h
(
g−1 r(g′H)

)−1

.

(24)

18This section can usually not be chosen to be continuous, but being measurable is enough for our purposes.
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From this, we deduce:

g̃.f(g′H) = [g.f ]
(

r(g′H)
)

= f
(
g−1 r(g′H)

)
= f

(
r
(
g−1 r(g′H)H

)
h
(
g−1 r(g′H)

))
= f

(
r
(
g−1g′H

)
h
(
g−1 r(g′H)

))
= ψ

(
h
(
g−1 r(g′H)

)−1
)
f
(

r(g−1g′H)
)

= ψ
(

h
(
g r(g−1g′H)

))
f̃
(
g−1g′H

)
= [g.f̃ ](g′H),

i.e., the desired equivariance g̃.f = g.f̃ .

Given f ′ : G/H → Vψ, we first verify that f ′ satisfies eq. 18, i.e. that is lives in HomH(G,Vψ).
First, note that

h
(
gh−1

)
= r

(
gh−1H

)−1
gh−1

= r
(
gH
)−1

gh−1

= h(g)h−1.

(25)

From this, we deduce:
f ′
(
gh−1

)
= ψ

(
h(gh−1)−1

)
f ′(gH)

= ψ
(
hh(g)−1

)
f ′(gH)

= ψ(h)ψ(h(g))f ′(gH)

= ψ(h)f ′(g).

We now show the equivariance of (·). We first note, using the result of eq. 24 and eq. 25:

h(g′)−1 h
(
g r
(
g−1g′H

))
= h(g′)−1 h

(
g−1 r

(
g′H

))−1

=
[

h
(
g−1 r

(
g′H

))
h(g′)

]−1

= h
(
g−1 r

(
g′H

)
h(g′)

)−1

= h
(
g−1g′

)−1
.

We deduce:
g.f ′(g′) = ψ

(
h(g′)−1

)
[g.f ′](g′H)

= ψ
(

h(g′)−1
)
ψ
(

h
(
g r(g−1g′H)

))
f ′
(
g−1g′H

)
= ψ

(
h(g−1g′)−1

)
f ′
(
g−1g′H

)
= f ′(g−1g′)

= [g.f ′](g′),

i.e., the desired equivariance g.f ′ = g.f ′.

Finally, we need to show that f̃ = f and f̃ ′ = f ′, i.e., that the maps (̃·) and (·) are inverse to each
other. We have

f̃ (g) = ψ
(

h(g)−1
)
f̃(gH)

= ψ
(

h(g)−1
)
f
(

r(gH)
)

= f
(

r(gH) h(g)
)

= f(g)
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and

f̃ ′(gH) = f ′
(

r(gH)
)

= ψ
(

h(r(gH))−1
)
f ′
(

r(gH)H
)

= f ′
(
gH
)
,

where we used r(gH)H = gH , h
(

r(gH)
)

= e, and ψ(e) = idVψ in the last step. More technical
details, especially on the unitarity of the isomorphism, can be found in Taylor & Kaniutrh (2013).
This finishes the proof.

Proposition D.4 justifies the following definition:
Definition D.5 (Induced Representation). For any irrep ψ of H ⊆ G, we define the induced
representation IndGH ψ as the unitary G-representation acting on IndGH Vψ := HomH(G,Vψ) ∼=
Hom(G/H, Vψ) as in eq. 19 or eq. 23, depending on which representation space is chosen. We will
always make the representation space (Mackey functions or quotient vector fields) explicit in the
following.

D.3 HARMONIC ANALYSIS OF INDUCED REPRESENTATIONS

Before we come to finding harmonic bases of induced representations, we must deal with a small
technicality: in the induced representation given by Mackey functions, the equivariance property
f(gh−1) = ψ(h)f(g) is used, which suggests that we look at the following left-action of G on
itself: g ? g′ := g′g−1, compared to the usual left action g.g′ := gg′. Similarly to how we solved
for a basis of the space of steerable kernels K : X ′ → HomG(Vl, VJ) with our Wigner-Eckart
theorem, Theorem B.5, by studying L2

K(X ′), we want to find a basis of the space of Mackey functions
f : G → Vψ by studying L2

K(G) – however, due to the adapted left-action on G, we also need to
consider a different action on L2

K(G).

Thus, define L2
K(G)2 := L2

K(G) together with the action (g ? f)(g′) := f(g′g), which can be shown
to be a well-defined left-action on L2

K(G)2. This is then a unitary representation. Fortunately, it turns
out to be isomorphism to the standard regular representation:
Lemma D.6. There is an isomorphism of unitary representations

L2
K(G) L2

K(G)2

Φ

Φ

given in both directions by the same function:[
Φ(f)

]
(g) := f(g−1).

Proof. Since in L2
K(G), we integrate over an inversion-invariant Haar measure, Φ is a unitary

transformation. It is also clear that Φ is its own inverse. Thus, we are only left with checking the
equivariance in one of the two directions:[

Φ(g.f)
]
(g′) = [g.f ]

(
g′−1

)
= f

(
g−1g′−1

)
= f

(
(g′g)−1

)
=
[
Φ(f)

]
(g′g)

=
[
g ? Φ(f)

]
(g′).

It follows Φ(g.f) = g ? Φ(f), i.e., the desired equivariance.

We remind the reader of the following notation introduced in Section A, which we use in the harmonic
analysis of the induced representation: Ĝ is the set of isomorphism classes of unitary irreps of G. mj

is the multiplicity of the irrep ρj : G → U(Vj) in the regular representation L2
K(G). For j ≤ mj ,

pji : L2
K(G) → Vj is the corresponding harmonic projection. [ψj] is the multiplicity of the irrep
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ψ : H → U(Vψ) in ResGH Vj . Eψ = dim EndH,K(Vψ) is the dimension of the endomorphism space
of Vψ. The cψr : Vψ → Vψ, r ≤ Eψ, form a basis of endomorphisms of Vψ. IDψj

t : ResGH Vj → Vψ
is an irrep decomposition projection. The Y mji : G → K form a harmonic basis of the regular
representation L2

K(G). Yji : G→ Kdj ∼= Vj is the column-vector of all the Y mji . Yji is its complex
conjugation.

Finally, note that after choosing bases, by abuse of notation we also refer with cψr and IDψj
t to the

matrices corresponding to the linear maps.

Theorem D.7. A basis of Mackey functions IndGH Vψ = HomH(G,Vψ) is given by{
fjitr : G→ Vψ ∼= Kdψ | j ∈ Ĝ, i ≤ mj , t ≤ [ψj], r ≤ Eψ

}
.

Thereby, we have
fjitr(g) = cψr · ID

ψj
t ·Yji

(
g−1

)
Consequently, a basis of ψ-vector fields over the quotient space, IndGH Vψ = Hom(G/H, Vψ), is
given by {

f̃jitr : G/H → Vψ ∼= Kdψ | j ∈ Ĝ, i ≤ mj , t ≤ [ψj], r ≤ Eψ
}

with f̃jitr(gH) := fjitr(r(gH)), where r : G/H → G is a measurable section.

Proof. We have

HomH(G,Vψ)
(1)∼= HomH,K

(
ResGH L

2
K(G)2, Vψ

)
(2)∼= HomH,K

(
ResGH L

2
K(G), Vψ

)
(3)∼=
⊕̂
j∈Ĝ

mj⊕
i=1

HomH,K
(

ResGH Vj , Vψ
)

(4)∼=
⊕̂
j∈Ĝ

mj⊕
i=1

[ψj]⊕
t=1

EndH,K(Vψ).

Step (1) follows from Theorem B.2 with G replaced by H , G′ replaced by G, X ′ replaced by G
together with the left-action g ? g′ := g′g−1, and HomK(Vl, VJ) replaced by Vψ .19 Step (2) follows
from Lemma D.6. Step (3) is the Peter-Weyl Theorem A.6. And finally, step (4) uses the irrep
decompositions IDψj

t : ResGH Vj → Vψ .

Explicitly, from right to left the isomorphism is given by:

(
cjit
)
jit

(4)7→

(
[ψj]∑
t=1

cjit ◦ IDψj
t

)
ji

(3)7→
∑
j∈Ĝ

mj∑
i=1

[ψj]∑
t=1

cjit ◦ IDψj
t ◦pji

(2)7→
∑
j∈Ĝ

mj∑
i=1

[ψj]∑
t=1

cjit ◦ IDψj
t ◦pji ◦ Φ

(1)7→
∑
j∈Ĝ

mj∑
i=1

[ψj]∑
t=1

cjit ◦ IDψj
t ◦pji ◦ Φ|G.

19Note that in the original theorem, the structure of the Hom-representation is not actually used, so we can
just replace it by any finite-dimensional representation; in this case, Vψ
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Thus, a basis is given by all fjitr := cψr ◦ IDψj
t ◦pji ◦ Φ|G. The result now follows by expanding the

dirac delta function δg in the harmonic basis:

pji ◦ Φ|G(g) = pji
(
Φ(δg)

)
= pji

(
δg−1

)
=

dj∑
m=1

〈Y mji | δg−1〉 · pji
(
Y mji
)

=

dj∑
m=1

Y mji
(
g−1

)
· |jm〉

= Yji
(
g−1

)
.

In the last step, we identified Vj ∼= Kdj , and thus |jm〉 with a standard basis vector em. Note that, to
be precise, one would need to approximate the Dirac delta function with square-integrable functions.
The details of such arguments can be found in the proof of Theorem D.13 of Lang & Weiler (2020).

The last statement about a basis of Hom(G/H, Vψ), finally, follows from Proposition D.4.

Corollary 4. An harmonic basis for complex Mackey functions is given by:{
fjit : G→ Vψ ∼= Cdψ | j ∈ Ĝ, i ≤ dj , t ≤ [ψj]

}
.

where
fjit(g) = IDψj

t ·
√
djρj(g

−1)ei

Proof. Using Proposition A.7, we find that Yji(g−1) =
√
djρj(g

−1)ei. Because we assume complex
representations, EndG,C(ψ) only contains scalar multiples of the identity, due to Schur’s Lemma. In
other words, cψr is always the identity matrix.

Corollary 5. Assume that all real irreps are defined over a basis as in Theorem C.11. An harmonic
basis for real Mackey functions is given by:{

fjitr : G→ Vψ ∼= Rdψ | j ∈ Ĝ, i ≤ mj = dj/Ej , t ≤ [ψj], r ≤ Eψ
}
.

where
fjitr(g) = cψr · ID

ψj
t ·
√
djρj(g

−1)eIji

Ij is an index set containing the indexes of the mj = dj/Ej columns of ρj with linearly independent
matrix coefficients.

Proof. Using Proposition A.7, If ρj is expressed in a basis as in Theorem C.11, the matrix coefficients
of ρj in a column i are linearly dependent with those in Ej columns of ρj . Therefore, it is sufficient
to consider a subset of mj = dj/Ej columns of ρj which contain linearly independents matrix
coefficients. Additionally, if ρj is expressed in the basis described in Supplementary C.3, Ij =

{1, 2, . . . , dj/Ej} so Iji = i.

In Section D.5, we show that this basis is indeed harmonic and we explicitly derive a the action of G
on it as a direc-sum of irreps.

D.4 RECONSTRUCTING THE IRREP DECOMPOSITION: THE COMPLEX CASE

The goal of this and the next section is to use write the action of G on the bases found above explicitly
as a direct sum of irreps of G. We first consider the simpler case of complex valued irreps.

Recall Corollary 4. Consider the set of all basis elements for a fixed value of j, i.e. {fjit}it where:

fjit(g) = IDψj
t ·
√
djρj(g

−1)ei
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Let f be a Mackey function in the span of these basis elements, i.e. there exists {wit ∈ C}it such
that:

f(g) =
∑
it

witfjit(g)

=
∑
it

wit IDψt
t

√
djρj(g

−1)ei

=
∑
t

IDψt
t

√
djρj(g

−1)
∑
i

witei

=
∑
t

IDψt
t

√
djρj(g

−1)wt

where [wt]i = wit and wt ∈ Cdj . Now, the action of G on these functions is the usual action on
L2(G), i.e. ∀k, g ∈ G:

[k.f ](g) = f(k−1g) =
∑
it

witfjit(k
−1g) =

∑
t

IDψt
t

√
djρj(g

−1) (ρj(k)wt)

In other words, the space of functions spanned by {fjit}it is isomorphic to
⊕[ψj]

t Vj , and each wt

lives in one such Vj space. We call the vectors wt the Fourier Transform coefficients of the function f .
More generally, let f be a generic Mackey function in IndGH Vψ . The matrix f̂(ρj) of shape dj × [ψj]

contains in its columns the vectors wt ∈ Cdj for each t. We call the collection {f̂(ρj)}j the Fourier
Transform of the function f . Note that if ψ is the trivial representation, this definition recovers the
classical definition of Fourier transform of functions over compact groups or homogeneous spaces.
Finally, it follows that IndGH ψ

∼=
⊕

j

⊕[ψj]
t ρj .

D.5 RECONSTRUCTING THE IRREP DECOMPOSITION: THE REAL CASE

In the real case, this decomposition is less straightforward.

Recall Corollary 5. Consider the set of all basis elements for a fixed value of j, i.e. {fjitr}itr where:

fjitr(g) = cψr · ID
ψj
t ·
√
djρj(g

−1)ei

with i ≤ mj = dj/Ej . Let f be a Mackey function in the span of these basis elements, i.e. there
exists {witr ∈ R}itr such that:

f(g) =
∑
itr

witrfjitr(g)

=
∑
itr

witrc
ψ
r IDψt

t

√
djρj(g

−1)ei

=
∑
tr

cψr IDψt
t

√
djρj(g

−1)
∑
i≤mj

witrei

=
∑
tr

cψr IDψt
t

√
djρj(g

−1)wrt

where [wrt]i = witr if i ≤ mj and [wrt]i = 0 otherwise. Unfortunately, this basis is not harmonic
since it does not have an explicit action of G through ρj on the coefficients vectors. To see this,
consider the function above transformed by an element k ∈ G:

[k.f ](g) =
∑
itr

witr[k.fjitr](g) =
∑
itr

witrfjitr(k
−1g)

=
∑
tr

cψr IDψj
t

√
djρj(g

−1)ρj(k)wrt

The vector ρj(k)wrt does not generally belong to the span of {ei|i ≤ mj}, i.e. the function k.f as
written above is not expressed directly in terms of the basis in Corollary 5. This means that the basis
we found is not an harmonic basis yet.

45



Published as a conference paper at ICLR 2022

Nevertheless, we know that the space of Mackey function has a compact action of G and therefore
must be decomposable in a direct sum of irreps of G. Therefore, there exists a change of basis from
the current one to an harmonic one. In the rest of this section, we will derive a variation of the
Gram–Schmidt process to compute such change of basis.

First of all, we want to identify the invariant subspaces spanned by the basis. To do so, we re-project
each basis element after an action of G on the basis itself, i.e. we project the function g.fjitr, with
g ∈ G on each other basis element fjksq . First, note that:

[g.fjitr](k) = cψr IDψj
t

√
djρj(k

−1)ρj(g)ei

=
∑
i′≤dj

cψr IDψj
t

√
djρj(k

−1)ei′ [ρj(g)]i′,i

i.e. g.fjitr belongs to the span of the set of functions {fjitr | i ≤ dj} (note that i ≤ dj rather than
i ≤ mj = dj/Ej). Despite the functions {fjitr | mj < i ≤ dj} do not belong to the basis in
Corollary 5, one can easily verify that they are actually Mackey functions and, therefore, must belong
to the space spanned by the basis in Corollary 5. Additionally, we will see that {fjitr | i ≤ dj}
contains functions which are orthogonal to each other; before showing this, we should define an inner
product of Mackey functions:

〈f1, f2〉G =

∫
G

〈f1(g), f2(g)〉ψdg =

∫
G

f1(g)T f2(g)dg

Note that we assumed real functions and real representations.

We can now compute the projection of any two functions:

〈fjitr, fjksq〉 =

∫
g∈G

eTi ρj(g)
√
dj [ID

ψj
t ]T [cψr ]T cψq IDψj

s

√
djρj(g)Tekdg

= eTi

(∫
g∈G

ρj(h)
√
dj [ID

ψj
t ]T [cψr ]T cψq IDψj

s

√
djρj(g)Tdg

)
︸ ︷︷ ︸

=:Otr,sq

ek

Lemma D.8. the following statements are true:

1. Otr,sq ∈ EndG(ρj)

2. Otr,sq =
∑
l〈Otr,sq, Il〉Il =

∑
l Tr([IDψj

t ]T [cψr ]T cψq IDψj
s ITl )Il

Proof. 1) By definition, Otr,sq is the invariant projection of a matrix with respect to a left and
right action of G through ρ. It follows that Otr,sq commutes with ρ(g) for any g ∈ G; hence,
Otr,sq ∈ EndG(ρj).

2) Let {Il | 1 ≤ l ≤ Ej} be an orthonormal basis for EndG(ρj) as in Sec. C. Then, we can project
Otr,sq on this basis:

〈Otr,sq, Il〉 =
1

dj
Tr(Otr,sqI

T
l )

=
1

dj
Tr(

∫
h∈G

ρj(h)
√
dj [ID

ψj
t ]T [cψr ]T cψq IDψj

s

√
djρj(h)TdhITl )

=
1

dj
Tr(

∫
h∈G

ρj(h)
√
dj [ID

ψj
t ]T [cψr ]T cψq IDψj

s

√
djI

T
l ρj(h)Tdh)

= Tr([IDψj
t ]T [cψr ]T cψq IDψj

s ITl )

Hence:

Otr,sq =
∑
l

〈Otr,sq, Il〉Il =
∑
l

Tr([IDψj
t ]T [cψr ]T cψq IDψj

s ITl )Il
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Note that the coefficients 〈Otr,sq, Il〉 can be easily computed numerically since all the matrices
involved are known.
Corollary 6. The following statements are true:

1. 〈Otr,sq, I1〉 = δstδrq

2. Otr,tr is the identity matrix

3. 〈fjitr, fjktr〉 = δik

Proof. 1) By considering l = 1, i.e. Il = id the identity, in Lemma D.8, we find

〈Otr,sq, I1〉 = Tr([IDψj
t ]T [cψr ]T cψq IDψj

s )

= Tr(IDψj
s [IDψj

t ]T [cψr ]T cψq )

Leveraging the orthogonality of IDψj and the fact that IDψj
t and IDψj

s contain the rows of IDψj :

= Tr(δst id[cψr ]T cψq )

There exists a unique r′ such that cψr′ = [cψr ]T cψq and cψr′ is not skew-symmetric iff r′ = 0, i.e. r = q:

= δstδrq

2) Note that the matrix Otr,tr is symmetric; since Il for l 6= 1 is antisymmetric, 〈Otr,tr, Il〉 = 0 if
l 6= 1. Using the result in 1), it follows that Otr,tr = id is the identity matrix.

3) An immediate consequence of this is that 〈fjitr, fjktr〉 = eTi Otr,trek = δik.

Note that the last proposition in Corollary 6 holds also for the functions in {fjitr | i > mj = dj/Ej}
which don’t belong to the basis in Corollary 5. Intuitively, for a fixed value of (t, r), the basis
in Corollary 5 ignores these orthogonal elements since they are linearly dependent with the basis
elements associated with some other value of (t, r). This explains why the form of the basis in
Corollary 5 is not convenient for us. Using the projection coefficients Otr,sq, we can compute the
necessary change of basis.

To do so, we start with the over-complete basis given by:

{fjitr | i ≤ dj , r ≤ Eψ, t ≤ [ψj]}

Recall that, for a fixed value of r and t, all basis elements Btr = {fjitr}i are orthogonal. We can
therefore build a basis by iteratively picking a set Btr and project it to the space orthogonal to the
one spanned by the basis elements already chosen.

Before making this more precise, we need to introduce a few more handful results.
Lemma D.9. For any r ≤ Eψ , t ≤ [ψj] and l ≤ Ej:

1. cψr IDψj
t Il ∈ HomH(ResGH ρj , ψ)

2. there is a set of real numbers (wtr,sq,l)s,q s.t.

cψr IDψj
t Il =

∑
q≤Eψ

∑
s≤[ψj]

cψq IDψj
s wtr,sq,l

3. wtr,sq,l = 〈Otr,sq, Il〉

Proof. 1) Note that cψr IDψj
t ∈ HomH(ResGH ρj , ψ) and Il ∈ EndG(ρ). It follows that, for any

h ∈ H < G:

cψr IDψj
t Ilρ(h) = cψr IDψj

t ρ(h)Il = cψr ψ(h) IDψj
t Il = ψ(h)cψr IDψj

t Il

i.e. cψr IDψj
t Il commutes with the action of H; hence, it belongs to HomH(ResGH ρj , ψ).
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2) This result is an immediate consequence of 1) by using the following decomposition

HomH(ResGH ρj , ψ) ∼=
[ψj]⊕
s

EndH(ψ)

and the basis {cψq }q for EndH(ψ).

3) Since {cψq IDψj
s }q,s is an orthonormal basis for HomH(ResGH ρj , ψ), the coefficients (wsq,tr,l)s,q

are found just by projecting the matrix on each basis element using a (scaled) standard inner product,
i.e.:

wtr,sq,l = 〈cψq IDψj
s , cψr IDψj

t Il〉

=
1

dj
Tr
(
cψq IDψj

s ITl [IDψj
t ]T [cψr ]T

)
=

1

dj
Tr
(

[IDψj
t ]T [cψr ]T cψq IDψj

s ITl

)
= 〈Otr,sq, Il〉

Lemma D.10. Let {bi}
dj
i=1 a set of Mackey functions defined as:

bi(g) :=
∑
r,t

cψr IDψj
t

√
djρj(g)Teibr,t

parameterized by the vector b = (br,t)r,t. Let b(g) = (b1(g)| . . . |bi(g)| . . . ) ∈ Rdψ×dj the matrix
obtained by stacking horizontally the vectors {bi(g)}i, i.e.

b(g) =
∑
r,t

cψr IDψj
t

√
djρj(g)T br,t

The set of functions {bi}
dj
i=1 is an harmonic family, i.e. if f(g) = b(g)f for a coefficients vector

f ∈ Rdj , then [k.f ](g) = f(k−1g) = b(g)ρj(k)f . In other words, the function k.f is the function
parameterized by the coefficients ρj(k)f .

Proof.

f(k−1g) = b(k−1g)f

=
∑
r,t

br,tc
ψ
r IDψj

t

√
djρj(k

−1g)Tf

=
∑
r,t

br,tc
ψ
r IDψj

t

√
djρj(g)T ρj(k)f

= b(g)ρj(k)f

Finally, we define a few operations which we will need to combine and project harmonic functions in
our final algorithm.

Lemma D.11. Let a and b be two set of harmonic functions as in Lemma D.10, respectively parame-
terized by the vectors a and b. Let α ∈ R and M ∈ EndG(ρj); then, the following sets of functions
are all harmonic families as in Lemma D.10:

1. the set f defined as f(g) = αa(g)

2. the set f defined as f(g) = b(g)− a(g)

3. the set f defined as f(g) = a(g)M
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Proof. 1) This is a simple consequence of the linearity of the harmonic property.

2)

f(g) =
∑
r,t

cψr IDψj
t

√
djρj(g)T br,t −

∑
r,t

cψr IDψj
t

√
djρj(g)Tar,t

=
∑
r,t

cψr IDψj
t

√
djρj(g)T

︷ ︸︸ ︷
(br,t − ar,t)

=:fr,t

3) Let M =
∑
lmlIl. Then:

a(g)M =
∑
r,t

cψr IDψj
t

√
djρj(g)Tar,tM

=
∑
r,t

cψr IDψj
t

√
djρj(g)Tar,t

∑
l

mlIl

=
∑
l,r,t

ar,tml

(
cψr IDψj

t Il

)√
djρj(g)T

=
∑
l,r,t

ar,tml

(∑
q,s

cψq IDψj
s wtr,sq,l

)√
djρj(g)T

=
∑
q,s

∑
l,r,t

wtr,sq,lar,tml


︸ ︷︷ ︸

∈R

cψq IDψj
s

√
djρj(g)T

where we used Lemma D.9.

Corollary 7. Given two harmonic families a and b, let Oa,b =
∫
G
a(g)T b(g)dg be the matrix

containing the inner product between each pair of functions in a and b. Then, Oa,b ∈ EndG(ρj) and
Oa,b =

∑
l wa,b,lIl, where wa,b,l =

∑
sq,tr as,qbt,rwsq,tr,l.

Moreover, let f be a set of functions defined as f(g) = b− aOa,b. Then, Oa,f is the zero matrix.

Proof. The first result follows from:

Oa,b =

∫
G

a(g)T b(g)dg

=

∫
G

∑
s,q

√
djas,qρj(g)[IDψj

s ]T [cψq ]T
∑
r,t

cψr IDψj
t

√
djρj(g)T br,tdg

=
∑
s,q

∑
r,t

as,qbr,t

∫
G

√
djρj(g)[IDψj

s ]T [cψq ]T cψr IDψj
t

√
djρj(g)Tdg

=
∑
s,q

∑
r,t

as,qbr,tOsq,tr

The second result follows from

Oa,f =

∫
G

a(g)T f(g)dg =

∫
G

a(g)T b(g)dg −
∫
G

a(g)Ta(g)dgOa,b = Oa,b − idOa,b = 0 .

Additionally, note that all functions within the same harmonic family b have the same norm, i.e.

Ob,b =
∑
t,r

b2t,r id = ‖b‖ id
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where we used the fact Ob,b is a symmetric matrix and, therefore, wsq,tr,l = δstδqrδl,1. ‖b‖ is the
(squared) norm of each function in b.

We now have all the ingredients to describe the final algorithm. Let B = {} the (initially empty) set
of harmonic families chosen so far. In other words, an element bi of B is an harmonic family of dj
functions as in Lemma D.10 and is represented by a vector bi = (bi,t,r)t,r. Our goal now is to find
Mj = Eψ[ψj]/Ej vectors {bi}i such that Obi,bk = δi,k id.

To do so, we can repeat the following steps until the set B contains Mj elements:

1. pick a vector b = (bt,r)t,r , which defines the set of harmonics b

2. define b′ = b−
∑
bi∈B biOb,b′ , represented by the coefficients vector b′ = (b′t,r)t,r, where

the coefficients can be computed using Lemma D.11 and Corollary 7.

3. normalize b′ as b̃ = b′/
√
‖b′‖

4. add b̃ to B

Note that, at each iteration, we add dj orthogonal functions to the new basis and that the original
basis in Corollary 5 is Mj · dj dimensional. Therefore, the algorithm terminates in Mj iterations.

E NUMERICAL IRREPS DECOMPOSITION OF REAL REPRESENTATIONS

Assume a compact group G and a set of (representatives of the isomorphism classes of) orthogonal
real irreps Ĝ = {ρj}j . In this section, we only engage with real valued representations. In
particular, recall that, for a real-valued irrep ρ, its endomorphism space EndG(ρ) is not necessarily
1-dimensional, see Section C.

As stated in Corollary 1, any orthogonal real representation π of G can be decomposed as a direct
sum of irreps of G.20 The goal of this section is that of explicitly computing this decomposition
for an arbitrary finite-dimensional orthogonal real representation π of G. In other words, given
an input finite-dimensional (real, orthogonal) representation π, we want to find the orthogonal
transformation/matrix M and the multiplicities {[jπ] ∈ N}j such that:

π(g) = M

⊕
j∈Ĝ

[jπ]⊕
i=1

ρj(g)

MT

Thereby, being orthogonal means that the scalar product is preserved, which for matrices means that
the matrix is orthogonal in the classical sense – i.e., its columns build an orthonormal basis.

Warning: note that, with respect to Corollary 1 and the notation used in the main paper, in this section
M is transposed on the right-side rather than the left-side of the direct sum of irreps. To obtain the
decomposition used in the other sections, one just need to transpose our final result. The reason why
we consider this notation is simply that this is the convention we used in our implementation and we
wanted to keep the following algorithm consistent with our code.

In this whole section, we assume that π and all ρj are matrix representations, and correspondingly,
that M is given by a matrix.

To simplify the notation, define P =
⊕

j

⊕
i ρj , such that π = MPMT . Since M is orthogonal, we

can write πM = MP , i.e. M needs to commute with π and P . It follows that M ∈ HomG,R(P, π).

20That corollary speaks of unitary representations. But recall that by our convention, “unitary” means
“orthogonal” when the field is the real numbers.
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Recall that the block-diagonal structure of P induces a block-structure in the columns of M , visually:

π(g) =
[
. . . |Mj1| . . . |Mji| . . . |Mj[jπ]| . . .

]
·



. . .
ρ(g)

. . .
ρj(g)

. . .
ρj(g)

. . .


·



...
MT
j1
...

MT
ji
...

MT
j[jπ]

...


i.e., we split M in a number of vertical blocks, one for each occurrence i of each irrep ρj in P . From
the equation πM = MP we obtain the following: each such block Mji satisfies πMji = Mjiρj , i.e.
Mji ∈ HomG(ρj , π). We restrict our attention to this case. Thus, from now on, assume that ρ is a
real orthogonal irrep of G, and our goal is to find an orthogonal embedding in HomG(ρ, π), where π
is not necessarily irreducible.

Note that HomG(ρ, π) ∼=
⊕[jπ]

i=1 EndG(ρ). We can easily find a basis for HomG(ρ, π) by solving a
linear system. Let dj be the dimension of the representation space of ρj , and similarly, dπ be the
dimension of the representation space of π. Let Ij the dj × dj identity matrix and Iπ the dπ × dπ
identity matrix; then, the matrix Mji should satisfy:

∀g ∈ G, π(g)Mji = Mjiρj(g)

∀g ∈ G, π(g)MjiIj = IπMjiρj(g)

vectorizing both sides of the equation and using vec (ABC) =
(
CT ⊗A

)
vec (B):

∀g ∈ G, (Ij ⊗ π(g)) vec (Mji) = (ρj(g)T ⊗ Iπ) vec (Mji)

∀g ∈ G, (Ij ⊗ π(g)− ρj(g)T ⊗ Iπ) vec (Mji) = 0

Note that Ij ⊗ π(g)− ρj(g)T ⊗ Iπ = −ρj(g)T ⊕ π(g), where ⊕ indicates the Kronecker sum here
(not to be confused with the direct sum). Note that the last line above describes a linear constraint
on Mji for each group element g ∈ G. One can solve for the space of suitable Mji by stacking
vertically the matrices (Ij ⊗ π(g)− ρj(g)T ⊗ Iπ) for each g ∈ G and then solving for its null space
(e.g. through SVD). While this approach is feasible if G is a finite group and |G| is sufficiently small,
this can not be used for infinite groups (or large finite groups). If G is a finite group, one can easily
verify that it is sufficient to consider the matrices (Ij⊗π(g)−ρj(g)T ⊗ Iπ) associated with the set of
generators of G. Indeed, note that if Mji satisfies the constraint above for two group elements a and
b ∈ G, then it satisfies it also for ab and ba ∈ G. Finzi et al. (2021) follows precisely this approach
to compute a basis for a general space HomG(π1, π2), when G is finite. When G is an infinite Lie
group, Finzi et al. (2021) shows that it is sufficient to consider the Lie algebra generators of G to
solve this constraint. In our work, however, we do not want to rely on the Lie algebra of G, since
it would introduce additional – non-trivial – requirements when implementing a new equivariance
group G. Instead, we note that it is generally sufficient to consider a few random samples G ⊂ G to
generate enough constraint matrices {Ij ⊗ π(g)− ρj(g)T ⊗ Iπ|g ∈ G} such that the null space of
their vertical stack is precisely HomG(ρj , π).

A similar method was used already in Weiler et al. (2018a) to compute the Clebsh-Gordan coefficients
in the decomposition of the tensor product of the irreps of SO(3). These coefficients appear in their
kernel basis precisely as in our vectorized kernel constraint in Sec. 2.2. In Weiler & Cesa (2019)
(Appendix G), the authors discuss the cost of this approach when applied on generic input and output
representation pairs, and highlight the benefits of, instead, restricting the consideration to only pairs
of input and output irreducible representations, as done here.

Therefore, by following the method just described, we can generate an orthonormal basis for the
space of vectorized matrices satisfying the constraint above. By un-vectorization, any element in the
space spanned by this basis generates a matrix Mji such that πMji = Mjiρj . This is not sufficient
yet for us, since we require the whole matrix M to be orthogonal.
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From now, we assume the previous method generated an orthonormal basis Bj = {Bj,i}di for
HomG(ρj , π), i.e. a collection of d = [jπ] ·Ej matrices of shape dπ × dj which are orthogonal with
respect to a (scaled) standard inner product 〈A,B〉 = 1

dj
Tr(ABT ) = 1

dj
vec (A)

T
vec (B). Recall

that Ej is the dimensionality of EndG,R(ρj).

In order to build a matrix M which is orthogonal, for each j, we need to choose [jπ] orthogonal
matrices {Mji}[jπ]

i in HomG(ρj , π), such that all columns of all matrices Mji are also orthogonal to
each other.
Lemma E.1. Any matrix A1 ∈ HomG(ρj1 , π) has columns which are orthogonal to the columns of
any matrix A2 ∈ HomG(ρj2 , π), for j1 6= j2.

Proof. This is a direct consequence of the fact that any homomorphism in A1 ∈ HomG(ρj1 , π) maps
to a subspace V1 ⊂ Vπ which is orthogonal to the image V2 of A2 ∈ HomG(ρj2 , π). This can be
seen by realizing that the projection from V1 to V2 is an intertwiner, and thus needs to be zero by
Schur’s Lemma since V1 and V2 are not isomorphic.

Lemma E.2. Any orthonormal basis for HomG(ρj , π) contains matrices which are orthogonal, i.e.,
such that the columns are orthogonal and normalized.

Proof. Let {Ek}
Eρ
k be an orthonormal basis for EndG(ρ). We know that there exists a matrix M

such that 1) M is orthogonal and 2) π = M
(⊕

j ρ
⊕[jπ]
j

)
MT .21 Therefore, there exists a collection

{Mji}[jπ]
i=1 of orthogonal matrices in HomG(ρj , π), where Mji are the blocks of the matrix M before.

It follows that there exists a basis for HomG(ρ, π) defined as H = {IkMji | 1 ≤ k ≤ Ej , 1 ≤ i ≤
[jπ]}. This basis is made of orthogonal matrices, since both Ik and Mji are orthogonal.

Note that we don’t know M and H, but we only know they exist. AssumeH = {Hj}j is a basis for
HomG(ρ, π) made of orthogonal matrices, i.e. for each i, HT

i Hi = I . More generally HT
i Hl = δilI .

Then any orthonormal basis for this space is made of orthogonal matrices. Indeed, assumeB = {Bl}l
is a basis such that 〈Bl, Bl〉 = 1. An element Bl can be written as Bl =

∑
i bliHi. It follows that for

any element Bl:

BTl Bl =

(∑
i

bl,iHi

)T
·
(∑

i

bl,iHi

)
=
∑
i1,i2

bl,i1bl,i2H
T
i1Hi2

=
∑
i

bl,ibl,iI

= 〈B,B〉I = I

i.e. any element of an orthonormal basis for HomG,R(ρj , π) must contains matrices which are
themselves orthogonal.

It follows that we only need to focus on finding a collection {Mji}[jπ]
i=1 of matrices whose columns are

orthogonal; the orthogonality of columns within the same matrix Mji and between different matrices
Mj1,i1 and Mj2,i2 with j1 6= j2 is already guaranteed.

Recall that Bj = {Bj,i}di is the orthonormal basis for HomG(ρj , π) generated by the numerical
method (e.g. SVD). To find suitable {Mji}i, it is sufficient to set Mj0 = Bj0. LetMj the subset of
all matrices {Mji}i already set (initially containing only Mj0). Let {Ik}

Ej
k=1 be an orthonormal basis

for EndG,R(ρj). Let Bi=0 = Bj . Then we build the setMj through the following iterative method:

1. create B′ = {MjiIk|Mi ∈Mj , k ∈ {1, . . . , Ej}}
2. project the elements in Bi on the space space of matrices which is orthogonal to the span of
B′ and remove all zero elements (i.e. all elements which already belong to the span of B′)

21This is a direct consequence of Lemma B.29 in Lang & Weiler (2020).
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3. pick the first non-zero element of Bi, set Mji to that and add it inMj

4. repeat until the set Bi is empty

Up to a scalar factor (of
√
dj), the matrices inMj are all orthogonal. Additionally, this set contains

precisely [jπ] matrices.

By stacking all matrices together, one builds the matrix M .

Note also that this method can be used to find the multiplicities [jπ], too. Indeed, because each column
of ρj is related through an endomorphism precisely with Ej other columns (see Theorem C.11), once
a basis Bj with d elements is found, it is sufficient to compute [jπ] = d/Ej , since we assume the
type of ρj (and therefore Ej) is known.

F REAL IRREDUCIBLE REPRESENTATIONS OF THE DIRECT PRODUCT OF TWO
COMPACT GROUPS

A useful operation to generate new groups is the direct product. Given two groups A and B, their
direct product G = A×B is a group defined as:

• the Cartesian product of the element of A and B, i.e. {(a, b) | a ∈ A, b ∈ B}
• with the group law · : G×G→ G defined as (a1, b1) · (a2, b2) = (a1a2, b2b2).

Many groups can be written as a direct product of two smaller groups. In particular, O(3) =
Inv×SO(3), or more generally O(n) = Inv×SO(n) when n > 1 is odd, where Inv = {±1} is the
group generated by the reflection x 7→ −x. In our work, we are interested in the direct product to
easily build many subgroups of O(n) (in particular, of O(3)) which have form G = Inv×H , where
H < SO(n). This is the case for the cylindrical symmetries (H = SO(2), O(2) or their discrete
subgroups) or the full isometries of the solids (H = T , O or I); see Sec. G.

In order to use these groups, it is sufficient for us to build their set of irreducible representations. In
this section, we describe a method to generate the set of real irreducible representations of a direct
product of two compact groups from the irreps of the two groups.

Given two compact groups A and B and their respective set of (representatives of) complex unitary
irreducible representations Â = {αi}i and B̂ = {βj}j , it is well known that any complex unitary
irrep of G = A × B is isomorphic to a unique γij = αi ⊗ βj for a particular choice of i and j.
Thereby, (αi ⊗ βj)(a, b) := αi(a)⊗ βj(b) is the Kronecker product of the two matrices αi(a) and
βj(b). Thus, a set of representatives of isomorphism classes of unitary irreps Ĝ can be constructed as

Ĝ = {γij = αi ⊗ βj | αi ∈ Â, βj ∈ B̂}. (26)

However, this results does not hold in the real field. In the rest of this section, we will derive a
variation of this theorem using real irreducible representations, which is more useful to describe the
representations of the groups we used.

In Appendix C.3, we have already shown that any real irrep ψ of G can be classified in one of the
following three categories:

• real-type: ψ ∼= σ ∼= σ

• complex-type: ψ = σR ∼= σ ⊕ σ, with σ � σ

• quaternionic-type: ψ = σR ∼= σ ⊕ σ ∼= σ ⊕ σ, as σ ∼= σ

where σ is a complex irrep of G. Moreover, for each complex irrep σ, there exists only one real irrep
ψ which contains it.

We can use this classification starting from the complex irreps of G which we have already defined in
Eq. 26. First, we clarify some notation. We use Greek letters like α, β, γ to indicate complex irreps
and Roman letters to indicate the corresponding real irreps a, b, c. For each complex irrep γij , there
can be only one real irrep cij containing it. It follows that αi ⊗ βj only appears in cij . Moreover, if
αi � αi, i.e. ai is of complex-type, we index the complex irrep αi with i, i.e. αi ∼= αi.
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We can now introduce a useful result for real irreps:

Definition F.1 (Frobenious-Schur Indicator). Let G be a compact group and ρ a complex irreducible
representation of G. Let χ be the character of ρ, i.e. χ : G→ C, g 7→ Tr(ρ(g)). The Frobenious-
Schur indicator ιρ of ρ is defined as:

ιρ :=

∫
G

χ(g2)dg

This indicator can only take the following values:

ιρ =


−1 if ρ is contained in real type irrep

0 if ρ is contained in complex type irrep
1 if ρ is contained in quaternionic type irrep

This allows us to analytically determine the type of the real irrep associated with a complex one.

We can combine this result with the definition of complex irreps of G = A×B in Eq. 26 to find the
type of the real irreps of G. Let γij = αi ⊗ βj a complex irrep of G; then:

ιγij =

∫
G

Tr((αi ⊗ βj)(g2))dg

=

∫
A

∫
B

Tr(αi(a
2)⊗ βj(b2))da db

Using the property of the trace and the Kronecker product:

=

∫
A

∫
B

Tr(αi(a
2)) · Tr(βj(b

2))da db

=

∫
A

Tr(αi(a
2))da

∫
B

Tr(βj(b
2))db

= ιαiιβj

Hence, the types of the irreps αi and βj of A and B fully determine the type of the irrep γij of G.
This can be visualized in the following table:

αi βj real ιβj = 1 complex ιβj = 0 quaternionic ιβj = −1

real ιαi = 1 ιγij = 1 ιγij = 0 ιγij = −1

complex ιαi = 0 ιγij = 0 ιγij = 0 ιγij = 0

quaternionic ιαi = −1 ιγij = −1 ιγij = 0 ιγij = 1

In the rest of this section, we will use the following two useful facts:

Re (γij) = Re (αi ⊗ βj) = Re (αi)⊗ Re (βj)− Im (αi)⊗ Im (βj)

Im (γij) = Im (αi ⊗ βj) = Re (αi)⊗ Im (βj) + Im (αi)⊗ Re (βj)

We will also assume the irreps to be expressed on the bases described in Section C.3. In particular, if
αi (or βj) are real type irreps, we assume they are expressed with respect to a basis such that they
have real entries, i.e. αi = ai (and βj = bj). In such case, Re (αi) = ai and Im (αi) = 0. If αi (or
βj) is a complex or quaternionic type irrep, we assume ai (and bj) is expressed as the realification:

ai =

[
Re (αi) − Im (αi)
Im (αi) Re (αi)

]
This enables us to extract Re (αi) and Im (αi) directly from the matrix coefficients of ai (or bj).

Therefore, to build the real irreps of G = A×B we distinguish three cases, depending on the type of
the irrep.
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Real type irrep Assume γij has real type. This implies that either both αi and βj have real type or
both have quaternionic type. In the first case, gij is simply computed as gij = ai ⊗ bj . In the second
case, assume αi and βj have the structure in Eq. 17. Then, one can verify that the change of basis

Q =
1√
2

 0 iI iI 0
−iI 0 0 iI

0 −I I 0
I 0 0 I


turns γij = αi ⊗ βj into a matrix with only real entries, i.e. gij = QγijQ

†, where I is the identity
matrix of size dimγij /4.

Complex type irrep Whenever γij has complex type, we can easily implement gij as the realifica-
tion:

gij :=

[
Re (γij) − Im (γij)
Im (γij) Re (γij)

]
By using the identities above, we can easily compute this matrix from entries of the matrices of ai
and bj . Note that, if both αi and βj have complex type, the irrep γij = αi ⊗ βj and γij = αi ⊗ βj
generate two different real irreps gij and gij . Since bj and bj are isomorphic real irreps, only one
of the two belongs to the set of representatives in Ĝ chosen. However, Re (βj) = Re

(
βj
)

and
Im (βj) = − Im

(
βj
)
, so gij can still be computed easily from the coefficients of ai and bj .

Quaternionic type irrep Like for the complex types, whenever γij has quaternionic type, we can
easily implement gij as the realification:

gij :=

[
Re (γij) − Im (γij)
Im (γij) Re (γij)

]
Additionally, note that this is the case only if either αi or βj is of real type, while the other is of
quaternionic type. Hence, the formula can be simplified by noting that either Im (αi) or Im (βj) is
zero.

G 3D SYMMETRIES, AZIMUTHAL SYMMETRIES AND THEIR RELEVANCE

E(3) is the group of isometries in R3 and includes translations (R3,+), rotations SO(3) and in-
versions22 through the origin Inv. The group O(3) = SO(3) × Inv is the compact group of
origin-preserving isometries. While continuous rotational symmetry SO(3) occurs commonly in
molecular data, smaller symmetry groups are sometimes more relevant to describe scenes or objects
in natural environments. For instance, when the vertical orientation of a the scene is obvious, the
symmetry group of the data is reduced to axial symmetries. There is only a limited number of
topologically closed infinite subgroups of O(3) (up to conjugation). The building blocks are rotations
along an axis (SO(2)), inversions (Inv), mirroring with respect to a plane (M) and an out-of-plane
rotation by π (F). Together, they generate 5 continuous symmetry groups:

• axial symmetry (SO(2) < SO(3)),
• dihedral symmetry (O(2) = SO(2)o F < SO(3)),
• conical symmetry (O(2) ∼= SO(2)oM < O(3)),
• cylindrical symmetry (Inv×SO(2) < O(3)) and
• full cylindrical symmetry (Inv×(SO(2)o F) < O(3)).

In the planar case, Weiler & Cesa (2019) observed benefits from using discrete groups rather than
continuous ones when the data is discretized on a grid and, therefore, the continuous symmetry of the
data is lost. The only discrete subgroups of SO(3) with more than 2 rotation axes are the symmetry
groups of the Platonic solids: the tetrahedral (T), the octahedral (O) and the icosahedral (I) groups
which have, respectively, 12, 24, and 60 elements. T and O are perfect symmetries of a voxel grid
and were previously used in Worrall & Brostow (2018); Winkels & Cohen (2018). Also, note that
T < I but O � I; hence, an I-equivariant CNN is not equivariant to all symmetries of the voxel grid.

22Inv ∼= C2 is a group containing the identity element and the inversion x 7→ −x in R3.
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H FURTHER DETAILS ON NETWORK DESIGNS AND EXPERIMENTS

H.1 ESTIMATING THE EQUIVARIANCE ERROR OF STEERABLE BASES

In this section we provide more details on Fig. 5. In this experiment, we considered equivariance to
the Icosahedral group G = I. We employ 5 × 5 × 5 filters, parameterized by two spherical shells
(one at radius 1 and one at radius 2) and the origin. In the two baselines, we use the orbits containing
the vertices of either the icosahedron or the dodecahedron in the two spherical shells and the orbit
containing only the origin. The kernel is parameterized independently along each orbit by directly
using the Wigner-Eckart theorem from Lang & Weiler (2020) and, then, the kernels are embedded in
R3 by means of a small Gaussian smoothing kernel. In our basis, we parameterize each shell with
spherical harmonics band-limited to frequency 2 (the origin contains only frequency 0); each shell is
diffused along the radial direction with a small Gaussian kernel.

Each histogram in Fig. 5 shows the relative equivariance error of each element of one of the bases.
An histogram contains a point for each filter k in the basis associated with each pair of input and
output irreps (ρin, ρout) of G = I. The error of a basis filter k is computed as the average over all 60
rotations g ∈ I of the following error:

gx← downsample(g.X)
x← downsample(X)
fgx← conv3d(gx, k)
fx← conv3d(x, k)
gfx← ρout(g)fx
return compare(fgx,gfx)

where x (and gx) have the same resolution of the filter k, such that the outputs fx and fgx do not
have spatial resolutions. In this way, g acts on fx only by transforming its channels but no spatial
interpolation is necessary. To reduce the interpolation artifacts when rotating X 7→ g.X , we perform
the rotation at a higher resolution and then downsample the inputs by a factor of 3.

H.2 REGULAR AND QUOTIENT NON-LINEARITIES

Quotient and regular-type features encode square-integrable scalar functions over a homogeneous
space Q = G/H of G (with H = {e} and Q = G for the regular case). Whenever Q = G/H is
infinite, one can rely on a bandlimited representation of these functions in the Fourier domain, using
the harmonic bases we derived in Section D. More precisely, bandlimited functions are parameterized
by using a finite subset of the harmonic basis in Corollary 5, considering only those j in a subset
G̃ ⊂ Ĝ. Then, the action of G on a function turns into the representation ρ̃Q =

⊕
j∈G̃

⊕Mj ρj
acting on the coefficients vector which parameterizes it, where Mj is the multiplicity of the irrep ρj .
Given one such vector, the function it parametrizes can be sampled at any point q ∈ Q by evaluating
the harmonic basis on q.

In a neural network, a feature vector f(x) ∈ Rdρ of quotient (or regular) type ρ is interpreted as the
coefficients vector parameterizing a band-limited function in L2(Q) = L2(G/H) on a basis, which
transforms according to ρ.

A point-wise nonlinearity σ : R→ R (e.g. ELU) is applied on a quotient feature f(x) : Q→ R by
composition, obtaining a new quotient feature f ′(x), defined as [f ′(x)](q) = σ([f(x)](q)). When Q
is infinite, if f(x) is band-limited and σ is sufficiently smooth, we can recover an approximation of
f ′(x) from a finite number of samples.

Approximate point-wise non-linearity Let Q ⊂ Q be a finite number of samples from the space
Q = G/H . We define the non-linearity as

f(x) 7→ f ′(x) = [FT ◦ σ ◦ IFT](f(x))

where FT is a Fourier Transform, which recovers the coefficients of a band-limited function from a
number of samples, σ is the pointwise non-linearity and IFT is an Inverse Fourier Transform, which
just samples the function parametrized by the coefficients f(x) on the elements in Q. Note that IFT
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can be implemented as a simple multiplication with a matrix of shape |Q| × dρ and, similarly, FT
can be implemented as a multiplication with a matrix of shape dρ × |Q|, hence

f ′(x) = FTσ(IFT f(x)) ,

where FT and IFT are interpreted as matrices. In practice, the matrix IFT is implemented as a matrix
whose rows contain the Fourier transform of Dirac delta functions centered at each sample inQ, while
FT is implemented as the pseudo-inverse matrix FT = IFT†. This operation is only approximatively
equivariant and the degree of equivariance strongly depends on the number of samples |Q| as well
as their distribution over the group (and the smoothness of σ). In particular, it is important that the
samples inQ uniformly cover the space Q = G/H and are, therefore, as far away from each other as
possible.

To generate a sampling set Q, one can use the elements of a discrete subgroup of G (e.g. Icosahedral
group I < SO(3)) or optimize the location of |Q| points on Q by minimizing a potential energy, as
done by Bekkers (2020).

Computational benefits A typical feature f in our models includes multiples fields of the same
type, i.e. f =

⊕
i fi and ρ =

⊕
i ρi, with ρi ∼= ρj ∀i, j. Assume a sequence ConvND → σ →

ConvND in the model, where all layers operate on feature fields of type ρ. Let C =
∑
i dρi be

the size of the feature vectors f(x) ∈ RC . In our neural networks design, we ensure that the
number of channels in each layer is approximately constant across different models. In particular,
in models using quotient (or regular) feature types, we count the number of samples Q as channels
and, therefore, keep the quantity

∑
i |Q| ≈ N approximately constant. Let α = |Q|/dρi ; this

implies that the first ConvND only has
∑
i dρi ≈ N/α output channels (and the second ConvND

has this many input channels). Let k be the cost of a single convolution with 1 input and output
channels and m the number of pixels in the input grid. The cost of the non-linearity applied to
a single feature field is O(dρi |Q|) and there are N/|Q| such input fields. Then, the cost of this
layer is only O(kmCN/α + m(N/|Q|)|Q|dρi) = O(kmCN/α + mNdρi) which is equal to
O(kmCN/α), since mC � dρi . For comparison, the same block in a conventional network has
cost O(kmCN +mN) = O(kmCN), hence this layer is approximatively α times cheaper.

In Section H.7, we compare the approximate inference time of different architecture to verify the
computational benefits described above.

H.3 ARCHITECTURE DETAILS

All models used in our experiments consist of a sequence of a basic inverted-bottleneck residual
block, or small variations of it (see each experiment’s section). The basic block for a conventional
network consists of a sequence Conv3D - BatchNorm - ELU -Conv3D, whose input and output
are connected with a skip connection. The block has Cin input channels and the first convolution
maps to N > Cin channels. To downsample, we used stride 2 in the second Conv3D and average
pooling in the skip connection. We use kernel_size = 3 for both Conv3D. If the block has a
different number of channels Cout in output, the skip connection also contains a convolution with
kernel_size = 1. We refer to the linear path in the architecture, i.e. the sequence of skip
connections, as the backbone of the model. If Cj is the number of input channels of the j-th residual
block, we refer to [C1, C2, . . .] as the number of channels in the backbone features of the model.
If Nj is the number of channels used by the non-linearity of the j-th residual block, we refer to
[N1, N2, . . .] as the number of channels in the residual blocks of the model.

In an equivariant model, we associate a stack of field types {ρi}i on the input Cin channels, such
that

∑
i dρi ≈ Cin. Similarly, we associate a stack of field types to the N channels produced

by the first Conv3D. The particular choice here depends on the kind of equivariant non-linearity
used here instead of ELU. In general, we try to ensure that the channels used in the non-linearity
are approximatively equal to N , for a fair comparison. We now list a number of non-linearities
considered.

Gated Non-Linearities The input consists of a number of feature fields f(x) =
⊕

i fi(x) of type⊕
i ρi. Recall that fi(x) ∈ Rdρi . For each feature field i, the input should also contain a gate

gi(x) ∈ R of trivial type. Then, each input feature field fi(x) is mapped to f ′(x) = σ(gi(x))fi(x),
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where σ is a non-linearity like Sigmoid. Note that a gated non-linearity inherently loses some of its
input channels, i.e. the input gates {gi}i. In our models, we try to ensure that

∑
i (dρi + 1) ≈ N

(the +1 corresponds to the size of the gate gi(x) for each input feature field fi). Note that a field type
ρi can be any representation. In particular, we experiment with different choices of ρi; we consider
{ρi}i containing:

• each irrep of SO(3) of frequencies 1 to 2, in equal proportions
• each irrep of SO(3) of frequencies 1 to 3, in equal proportions
• each irrep of SO(3) of frequencies 1 to 2, with multiplicities proportional to their multiplici-

ties in the regular representation of SO(3), i.e. for each trivial ρ0, we include 3 copies of
the frequency 1 ρ1 and 5 copies of ρ2

• copies of the quotient representation ρS2 = ρ0 ⊕ ρ1 ⊕ ρ2, band-limited up to frequency 2

• copies of the quotient representation ρS2 = ρ0⊕ρ1⊕ρ2⊕ρ3, band-limited up to frequency
3

• copies of the regular representation ρreg = ρ0 ⊕ ρ⊕3
1 ⊕ ρ

⊕5
2 , band-limited up to frequency 2

To match the N channels, we also add trivial feature fields (ρi = ρ0) and operate on them with a
simple ELU non-linearity. Note that in all cases, the first Conv3D has Cin input channels and N
output channels, maintaining approximatively the same computational cost of the conventional CNN.

Tensor-Product Non-Linearity Let f(x) =
⊕

i fi(x) be the input features field, with type ρ =⊕
i ρi. In our experiments, we always chose all {ρi}i equal to a unique type, i.e. ρi = ρj for

all i, j. The tensor-product non-linearity maps fi(x) ∈ Rdρi to f ′i(x) = fi(x) ⊗ fi(x) ∈ Rd
2
ρi .

Note the quadratic growth in the number of channels. In the experiments, we keep the output size
approximatively equal to N , i.e.

∑
i d

2
ρi ≈ N . It is common in the literature to learn a linear

projection of f ′i(x) to a lower-dimensional feature field f ′′i (x) of type ρ′i, with dρ′i � d2
ρi . The

second Conv3D originally maps
∑
i d

2
ρi ≈ N channels to the output Cout channels, while this

projection would reduce the input channels to
∑
i dρ′i � N , thereby reducing the computational cost

of the layer proportionally. This, however, results also in a potential loss in expressiveness, since a
Conv3D layer taking N channels in input can learn a larger space of operations. Since we do not
expect this linear projection to improve the performance of this architecture, we do not include it in
our experiments. Finally, in our experiments we consider the following choices of ρi:

• the quotient representation ρS2 = ρ0 ⊕ ρ1 ⊕ ρ2, band-limited up to frequency 2

• the quotient representation ρS2 = ρ0 ⊕ ρ1 ⊕ ρ2 ⊕ ρ3, band-limited up to frequency 3

• the regular representation ρreg = ρ0 ⊕ ρ⊕3
1 ⊕ ρ

⊕5
2 , band-limited up to frequency 2

Note that a larger feature type ρi (i.e. larger dρi) results in a smaller number of independent copies
of it, since we constrain

∑
i d

2
ρi ≈ N . On the other hand, a larger ρi makes the tensor-product

fi(x)⊗fi(x) more expressive, since it combines more different input channels. Therefore, the choice
of the size of ρi should be a trade-off between expressiveness and computational and memory cost.

(Pointwise) Regular non-Linearities Again, we consider all input feature fields of the same type,
i.e. ρi = ρj for all i, j. Here, fi(x) ∈ Rdρi is interpreted as the coefficients vectors parameterizing
a band-limited function in L2(G), as described in Section H.2. We consider band-limiting up to
frequency 2 or 3, i.e. the three following choices of ρi:

• ρi = ρ0 ⊕ ρ⊕3
1

• ρi = ρ0 ⊕ ρ⊕3
1 ⊕ ρ

⊕5
2

• ρi = ρ0 ⊕ ρ⊕3
1 ⊕ ρ

⊕5
2 ⊕ ρ

⊕7
3

We experiment with different sampling sets G ⊂ G:

• the 24 elements of the Octahedral group O < SO(3)

• the 60 elements of the Icosahedral group I < SO(3)
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• P points over G with maximal relative distance, obtained by optimizing a potential energy
• P = 24 · |S| points over G with maximal relative distance, obtained by optimizing over

a set S ⊂ G a potential energy over G =
⋃
o∈O{o.g|g ∈ S}, such that G has Octahedral

symmetry: for any o ∈ O, o.G = G.

In particular, the last sampling set guarantees that the resulting neural network is at least perfectly
equivariant to O, i.e. the symmetries of the voxel grid. In general, we observe that at least |G| ≈ 2dρi
samples are necessary for achieving an equivariance error below 10%. For G = O(3), we use a
similar design and just augment the sampling set with inversions, i.e. we use G′ = Inv×G, where G
is a sampling set used for SO(3).

We argued about the computational benefits of this design in Section H.2. For discrete groups such as
O and I, we also use regular non-linearities. In this case, however, the first Conv3D in the residual
block directly use a regular feature types as output types and is immediately followed by the pointwise
non-linearity, with no need to perform sampling. Hence, the computational and memory cost of these
models is equivalent to that of a conventional network, i.e. they have no additional computational
gain.

(Pointwise) Quotient non-Linearities Similarly, we define quotient non-linearities, with the only
difference that fi(x) parameterizes a band-limited function over a homogeneous spaceQ = G/H , for
some H < G; see Section H.2. For G = SO(3), we consider the following quotient representations
ρi:

• ρS2 = ρ0 ⊕ ρ1 ⊕ ρ2

• ρS2 = ρ0 ⊕ ρ1 ⊕ ρ2 ⊕ ρ3

and the following sampling sets

• the (center of the) 30 edges of the icosahedron; note that this set has Icosahedral symmetry
• P points over Q with maximal relative distance, obtained by optimizing a potential energy
• P = 24 · |S| points over Q with maximal relative distance, obtained by optimizing over

a set S ⊂ Q a potential energy on Q =
⋃
o∈O{o.q|q ∈ S}, such that Q has Octahedral

symmetry: for any o ∈ O, o.Q = Q.

In particular, the last sampling set guarantees that the resulting neural network is at least perfectly
equivariant to O, i.e. the symmetries of the voxel grid. Additionally, note that for Q = S2, the second
sampling set corresponds to the well known Thomson problem. When G = O(3), we consider
Q = O(3)/O(2) ∼= S2 and Q = O(3)/ SO(2) ∼= Inv×S2. In the first case, we can reuse the
same sampling sets defined above for Q = SO(3)/ SO(2) ∼= S2. In the second one, we augment
the sampling set with inversions. The considerations about the computational cost discussed in
Section H.2 apply also here.

Invariant Maps Because we consider invariant tasks, an equivariant architecture should map to
invariant features before the final classification layer. To do so, it is common to use some invariant
map at the end of the convolutional feature extractor and then feed the invariant features in a few
final fully-connected layers. Here, we consider a few different invariant maps. Norm-pooling:
given an input field fi(x) ∈ Rdρi , we compute its norm, i.e. fi(x) 7→ f ′i(x) = ||fi(x)||2 ∈ R;
note that this is indeed an invariant quantity. We use this kind of map for models which should be
perfectly G equivariant, if G is a continuous group; for instance, we use it for models which use
gated non-linearities or tensor-product non-linearities. We experiment with different choices of ρi:

• the quotient representation ρS2 = ρ0 ⊕ ρ1 ⊕ ρ2, band-limited up to frequency 2

• the regular representation ρreg = ρ0 ⊕ ρ⊕3
1 , band-limited up to frequency 1

• the regular representation ρreg = ρ0 ⊕ ρ⊕3
1 ⊕ ρ

⊕5
2 , band-limited up to frequency 2

• {ρi}i contains copies of the irrep ρ0, ρ1 and ρ2 in equal proportion

Group Pooling: if G is a finite group, we can choose ρi = ρreg and, therefore, fi(x) ∈ R|G|. In
this case, we can compute the max fi(x) 7→ maxj [fi(x)]j . Something similar can be done if G
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is continuous and ρi is a band-limited regular representation by using a sampling set G. However,
this operation is often more unstable. To devise a more stable alternative for continuous groups,
we consider Average Pooling. This operation is identical to the regular non-linearity explained
above (i.e., f ′i(x) = [FT ◦σ ◦ IFT](fi(x))), with the difference that the final Fourier Transform FT
only recovers the invariant frequency 0 component. This is equivalent to averaging the output of
[σ ◦ IFT](fi(x)) over the samples G. In our architectures, we keep the number of invariant features
fed into the final fully-connected layers constant. Note that, to generate N invariant outputs, the
invariant maps require Ndρi inputs. This can be quite expensive if ρi is a regular representation (e.g.,
a regular representation of G = SO(3) band-limited to 2 has size 35). To alleviate this, we introduce
a Quotient Average Pooling. This operation is similar to Average Pooling but relies on quotient
representations (and samples X from a quotient space X), which have smaller size.

H.4 MNIST EXPERIMENTS

As a proof of concept, we train a conventional and a C8 equivariant model on rotated MNIST.
A model includes a sequence of 6 residual blocks similar to the ones described in Section H.3.
With respect to that design, here we use Conv2D and use stride 2 in the second convolution. We
downsample (with stride 2 convolution), every two blocks. In the first layer of the first block, we use
kernel_size = 7. The number of channels in the features of the backbone, connected through
the skip connections, is C = [1, 21, 54, 72, 108, 168]. The number of channels in each residual
block is N = [96, 192, 288, 288, 576, 576]. Both models map to 128 final invariant features. The
conventional model uses a final 3 × 3 max pooling over the spatial dimension. In the equivariant
model, we do not pad the convolution in the last residual block such that its output already has 1× 1
resolution. However, the last block maps to 128 copies of the regular representation of G = C8; we
then apply group pooling over them to generate 128 invariant features. Finally, both models use 2
fully connected layers to perform classification.

We train both models using Adam. We performed simple tuning of batch size, learning rate and weight
decay of each model independently by evaluating them on the validation set. The same number of
hyper-parameter combinations was evaluated for both models. Once the best set of hyper-parameters
was chosen, we re-trained a model using this configuration 5 more times using different random
seeds. We report the means and the standard deviations of the test performance over these runs.

H.5 MODELNET10 EXPERIMENTS

To generate the two ModelNet10 datasets, we use the original mesh data. Each mesh is centered
and scaled to fit in the [−1, 1]3 cube. Then, for each mesh we apply 3 random rotations. In
the normal ModelNet10 experiments, we only sample SO(2) rotations around the Z axis. In the
rotated ModelNet10 experiments, we sample arbitrary SO(3) rotations. A mesh is then rendered by
computing the signed distance function of each point in the voxel grid from the mesh. This distance
is then used into a Gaussian kernel to generate a smooth 3D occupancy grid of resolution 33 pixels.

The architecture used consists of a first Conv3D with kernel_size = 5, followed by 4 residual
blocks and final Conv3D layer. The second convolution layer of the 4 residual blocks uses stride 2.
All models map to 128 final invariant features. The last convolution layer has kernel_size = 3 In
the conventional networks, the last convolution layer has 128 output channels and uses padding = 1,
so its output has resolution 3px; we apply max pooling with a window of size 3 to generate 128
translation invariant features of resolution 1 pixel. In the equivariant networks, the last convolution
uses padding = 0 such that the output resolution is already 1 pixel; however, the last block maps
to a larger number of channels 128 · P , depending on the invariant map chosen. We choose this
design to maintain the computational and memory cost of the equivariant and the conventional models
comparable; indeed, the final features of the conventional network have shape 128× 33 while the
features of the equivariant one have shape 128 ·P × 13, before applying, respectively, max pooling or
an invariant map. We try to keep P ≈ 33 = 27. In the architectures, we useN = [240, 480, 480, 960]
channels in the residual blocks and C = [39, 78, 240, 480, 312] channels in the backbone. Finally,
three fully connected layers, alternated with dropout, batchnorm and ELU non-linearity, use these
invariant features to perform classification.

For the SO(2) model, we used regular non-linearities with regular representations band-limited up
to frequency 3 and |G| = 12 samples on a regular grid. Similarly, for the O(2), Inv×SO(2) and
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Inv×O(2) models, we used regular representations band-limited up to frequency 3 and G was built
by extending a grid of 12 points on their SO(2) subgroup with reflections and flips. In all cases, as
invariant map, we used quotient average pooling, with X ∼= S1 ∼= SO(2) and maximum frequency 3.

In the SO(3) models using regular non-linearities, we used features band-limited to frequency 2
when |G| = 60 and to frequency 3 when |G| = 120. For the O(3) model, we used regular features
band-limited up to frequency 2. In both SO(3) and O(3) models using quotient features, we used
features band-limited up to frequency 2.

For each equivariant model, the choice of feature types in the backbone (the input and output types of
each residual block) is independent of the non-linearities used. Moreover, since no non-linearities
are applied on these features, w.l.o.g. we can consider only irreps feature types. We consider the
multiplicity of the irreps a hyperparameter which we tune during hyper-parameter tuning.

We train all models using Adam. For each model, we independently performed simple tuning of batch
size, learning rate and weight decay by evaluating them on the validation set. This hyper-parameter
search also includes a search over the variants of each architecture design (see the variants of each
non-linear operation described in Section H.3). The same number of hyper-parameter combinations
was evaluated for all models. Once the best set of hyper-parameters was chosen, we re-trained a
model using this configuration 5 more times using different random seeds. We report the means and
the standard deviations of the test performance over these runs.

H.6 AUTO-ENCODER EXPERIMENTS ON MODELNET10

For completeness, here we extend the comparison between the steerable bases discussed in Section 5.2
with an auto-encoding experiment with ModelNet10 data. In this experiment, we use the rotated voxel
data from Section H.5 and train a model to reconstruct its own input. We consider an auto-encoder
architecture whose encoder and decoder comprise 5 blocks, each up/downsampling the features
by a factor of 2, such that the latent features have no spatial resolution. Each block is a residual
block including a sequence Conv3D - BatchNorm - ELU followed by either a Conv3D or a
Conv3DTransposed; all convolutions have kernel_size = 5 and padding = 2, and the
last Conv3D/Conv3DTransposed has stride = 2. The residual connection down/upsamples
with a Gaussian kernel followed by a learnable 1× 1× 1 convolution. Finally, the model includes an
invariant map and a Conv3D layer to predict a single value at each voxel cell.

The outputs of the encoder’s blocks have in order approximatively [30, 90, 240, 540, 1080] output
channels, while the decoder blocks have [540, 240, 120, 90, 50] output channels. The ELU modules
within each block have about [180, 360, 600, 840, 1080] and [1080, 840, 600, 360, 180] channels.

The models are trained on the data from Section H.5, which include 3 random rotations of each mesh.
Testing is performed on a subset of the test meshes but each mesh is rotated by each element of the
icosahedral group (i.e. | I | = 60 times), since the purpose is verifying the equivariance of the model
to the icosahedral group I. As in Section 5.2, we consider two versions of the same model which
differ by the choice of steerable basis employed. The following table reports the test mean-squared
errors (MSE) of the two models.

Description MSE

Icosahedral Symmetry 0.785± 0.130
Icosahedral Symmetry (finite orbits basis) 0.948± 0.004

Once again, we find the model using our anti-aliased basis outperforms the baseline using a finite-
orbits basis.

H.7 COMPUTATIONAL COST AND INFERENCE TIME OF THE MODELS

In Section H.2, we have argued that point-wise non-linearities based on discrete Fourier Transform
and inverse Fourier Transform benefit from a lower computational cost due to the factorized linear
layers. In this section, we verify this by comparing the inference time measured for different
architectures. We measure inference time by feeding 100 batches of 8 random 33× 33× 33 inputs
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(we first feed 10 more batches for warm-up). We report mean and standard-deviation over these runs
in Tab. 4. The architectures used are the ones described in Section H.3 and H.5. For reference, we
also report the number of parameters of each model. Note also that the equivariant models include a
small overhead due to the less optimized implementation of certain operations: while the I model has
approximatively the same running time of a conventional CNN, the gated non-linearity model and
the scaled-up regular model (marked with ∗) are slower that the first two. Despite this overhead, the
normal regular SO(3) model (without ∗) is much faster than all other models.

Table 4: Approximate inference times. ∗ indicates wider models to preserve the computational cost.

G Description time (ms) # params (×106)

{e} Conventional CNN 41.6± 0.2 36
I Icosahedral Symmetry 43.1± 0.2 0.49
SO(3) Chiral (Gated non-linearities) 52.2± 0.2 0.37
SO(3) Chiral (Regular, |G| = 96) 28.2± 0.2 0.25
SO(3) Chiral (Regular, |G| = 192)* 51.6± 0.2 0.24

H.8 LBA EXPERIMENTS

To perform the LBA experiments, we use the atom3d library from Townshend et al. (2020). In
particular, we adapted the 3DCNN example from their repository. In the example code, each test
molecule is randomly rotated at every run of the test. To make the testing procedure deterministic, we
generate a test set by rotating each test molecule with 5 random SO(3) rotations. The occupancy grid
of a molecule is generated by setting to 1 the voxel cell which is closest to each atom. This results in a
coarser rendering of the data, with respect to the ModelNet10 datasets. To mitigate the discretization
noise, we use voxels with a higher resolution of 65 pixels. Note that Townshend et al. (2020) used
voxel grids with resolution 40 pixels. However, the larger resolution of the input data can drastically
increase the memory cost of the models. To prevent this, all models include a first Conv3D layer
with kernel_size = 7 and stride = 2 which immediately downsamples the input. This first
convolution layer is then followed by 4 residual blocks. In each residual block, the stride = 2
convolution is performed in the first Conv3D rather than the second. In the conventional network,
the output resolution is 3px and we use max pooling to reduce it to 1 pixel. In the equivariant
models, the last residual block does not use padding such that the output resolution is already 1 pixel.
However, this last equivariant block has more output channels than the conventional network since
this block is followed from an invariant map layer. See Section H.5 for more details about this design
choice. In the architectures, we use N = [120, 120, 240, 480] channels in the residual blocks and
C = [26, 32, 64, 128] channels in the backbone. Finally, all models produce 256 invariant features
and terminate with two fully-connected layers, alternated with dropout, batchnorm and ELU, which
perform regression.

In the SO(3) architecture, we use regular non-linearities with regular features band-limited up
to frequency 2. Because of the lower computational cost of this architecture, we scale up the
number of channels in the residual block such that the computational cost is comparable with
that of a conventional CNN. This results approximatively in twice the number of channels of the
original model; see the paragraph regular non-linearities in Section H.3 for more details about the
computational cost of these operations.

To make our results comparable with Townshend et al. (2020), we use the same train, validation and
test split. Moreover, during training, we augment each molecule with a random SO(3) rotation, as
done in Townshend et al. (2020).

The training details and hyper-parameter tuning procedures are similar to those described in Sec-
tion H.5.
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